
A Complexity-Effective Simultaneous Multithreading Architecture

Carmelo Acosta † Ayose Falcón ‡ Alex Ramirez † Mateo Valero †
† Departament d’Arquitectura de Computadors

Universitat Politecnica de Catalunya –Barcelona, Spain
{cacosta, aramirez, mateo}@ac.upc.edu

‡ Barcelona Research Office
HP Labs

ayose.falcon@hp.com

Abstract

Different applications may exhibit radically different be-
haviors and thus have very different requirements in terms
of hardware support. In Simultaneous Multithreading
(SMT) architectures, the hardware is shared among mul-
tiple running applications in order to better profit from it.
However, current architectures are designed for the com-
mon case, and try to satisfy a number of different appli-
cation classes with a single design. That is, current de-
signs are usually overdesigned for most cases, obtaining
high performance, but wasting a lot of resources to do so.

In this paper we present an alternative SMT architecture,
the Heterogeneously Distributed SMT (hdSMT). Our archi-
tecture is based in a novel combination of SMT and clus-
tering techniques in a heterogeneity-aware fashion. The
hardware is designed to match the heterogeneous applica-
tion behavior with the statically and heterogeneously parti-
tioned resources. Such a design is aimed for minimizing the
amount of resources wasted to achieve a given performance
rate. On top of our statically partitioned architecture, we
propose an heuristic policy to map threads to clusters so
that each cluster matches the characteristics of the running
threads and overall hardware usage is optimized.

We compare our hdSMT architecture with a monolithic
SMT processor, where all threads compete for the same re-
sources, and with a homogeneous clustered SMT, where re-
sources are statically and equally partitioned across clus-
ters. Our results show that hdSMT architectures obtain an
average improvement of 13% and 14% in optimizing perfor-
mance per area over monolithic SMT and homogeneously
clustered SMT respectively.

Keywords - SMT, CMP, Clustering, Complexity-Effective,
Heterogeneity-Awareness, Mapping Policies.

1 Introduction

The needs of today’s multi-programmed workloads put
pressure on microprocessor design towards high-perfor-

mance and high-throughput machines. Thus, new ap-
proaches have arisen aimed at such a multithreaded sce-
nario, improving traditional superscalar processor capabil-
ities. Simultaneous multithreading (SMT) [20, 18, 19] and
chip multiprocessors (CMP) [11, 6] are two of these ap-
proaches. The first one evolves the traditional superscalar
architecture by sharing all the processor resources among
more than one running thread. The latter relies on simpler
cores, replicating them on a single chip and allocating run-
ning threads to these cores. Each one represents a different
approach to optimize the performance that a fixed transistor
budget can produce: A big machine where every resource is
shared versus several simpler machines where the sharing
locality is restricted. But they also imply a commitment:
the single thread high-performance of SMT, at a complexity
cost, against the low complexity but limited single-threaded
performance of CMP. However, there is also a wide spec-
trum in between SMT and CMP approaches as we vary the
amount of shared resources on chip [4].

As the number of transistors on chip increases, the issue
of how to employ them to achieve the highest performance
potential gets renewed importance. The design complex-
ity has to remain under reasonable costs while it achieves
the highest performance potential. But achieving high lev-
els of both performance and throughput from a given hard-
ware budget at a reasonable complexity cost is not an easy
task. Employing the additional resources to simply stretch
traditional structures, such as instruction queues, is not con-
ducive towards building highly pipelined processors with
short clock periods. Besides, power and thermal considera-
tions also have to be taken into account since future micro-
processors’ designs are likely to be limited by them. In this
sense, the reduced complexity of the CMP approach com-
bined with the resource exploitation capacity of the SMT
approach seems an appealing alternative.

General-purpose designs treat applications homoge-
neously, although not all applications have the same be-
havior. In fact, we can find a huge inter-application het-
erogeneity in current multi-programmed workloads, which
can be measured in terms of memory misses, branch mis-

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

predictions or instruction level parallelism (ILP) among
others. This heterogeneity results sometimes in applica-
tions executed using an amount of resources and power that
is not cost-effective with the performance obtained. The
techniques applied in SMT processors to reduce the con-
tention over shared resources between conflictive applica-
tions [17, 5] can help to face up this heterogeneity in appli-
cation behavior. However, instead of helping to reduce the
design complexity they even increase it. In the CMP ap-
proach, each running application is assigned to one of the
homogeneous cores in which the hardware has been par-
titioned. The design complexity is kept low at the cost
of a static limitation to the hardware that each application
can use, equal for all applications. By making the hard-
ware conscious of this inter-application heterogeneity, or
heterogeneity-aware, we could keep design complexity rea-
sonably low without losing too much performance. The
central insight behind a heterogeneity-aware design is giv-
ing each application access to a cost-effective amount of
resources.

In this paper, we propose the Heterogeneously Distributed
Simultaneous Multithreading (hdSMT) architecture, a novel
heterogeneity-aware SMT architecture that combines SMT
and clustering techniques. We review the open issue of
on chip resource distribution and propose a simultaneous
multithreading processor in which all the pipeline stages
but the fetch stage have been heterogeneously clustered —
pipelined from now on—, making up a multipipeline SMT
processor. Besides the fetch engine, all the pipelines share
the memory subsystem —including L1 caches— and the
register file. Consequently, the single-thread performance
is not hampered by a memory or register file static dis-
tribution as could happen in a CMP processor. In this
architecture the heterogeneity of the typical software that
will be executed on the processor is analyzed and mir-
rored itself in the hardware. Thus, the heterogeneous be-
havior of the running applications is matched with the het-
erogeneous hardware, mapping software needs to hetero-
geneously partitioned hardware resources. This hardware
configuration also allows reducing the contention between
conflictive threads as occurs in SMT processors. Thus, the
application-to-pipeline matching process also intends to put
conflictive threads in different pipelines, in order to reduce
a counterproductive interaction.

2 The hdSMT Architecture

The foundations of the hdSMT architecture are comprised
of a threefold combination of well known principles and
techniques: SMT, clustering, and heterogeneity-awareness.
An hdSMT processor proposes a multithreaded alternative
that lays on the spectrum that extends in between SMT
and CMP processors. As evaluated in [4], there are mul-

I$

Pipeline A

Pipeline B

Pipeline C

Pipeline N

…

D$RF

L2

D
e
c
o
d
e

R
e
g
is
te
r

R
e
n
a
m
in
g

IQ

L
Q

F
Q

L
D
S
T

U
n
it
s

In
t

U
n
it
s

F
P

U
n
it
s

Fetch

B
u
f
f
e
r

B
u
f
f
e
r

B
u
f
f
e
r

B
u
f
f
e
r

Fig. 1. The hdSMT Architecture.

tiple possible hardware configurations in between SMT and
CMP processors, as we vary the amount of resources shared
among the execution cores. However, the heterogeneity in
applications’ behavior makes vary the hardware require-
ments among different applications. This heterogeneity
may turn the evenly clustered approaches in [4] into not op-
timal. To better profit from the available hardware it should
be heterogeneously clustered and the applications appropri-
ately matched with the clusters according to their needs.
The hdSMT architecture maximizes the available hardware
budget by taking into account the heterogeneity in this way.

The hdSMT architecture overview is depicted in Fig. 1.
As in a conventional SMT processor, all threads share the
caches, register file, and fetch engine. However, the rest
of the pipeline stages and resources are arranged in het-
erogeneous clusters (or pipelines). So, each pipeline com-
prises all the pipeline stages of the conventional processor
but the fetch stage. Each pipeline also has got its own pri-
vate instruction queues, renaming map tables and functional
units. The size and number of these resources may vary
from pipeline to pipeline. Additionally, each thread’s in-
structions are stored in a private reorder buffer (ROB), one
per thread.

In this clustered multithreaded architecture, entire threads
are assigned to pipelines according to heterogeneity. This
implies that there are no dependencies between instructions
in different clusters, since all instructions from a single
thread are mapped to the same pipeline. The heterogeneity-
aware fetch engine strives to match both the needs of each
running application and the interaction among each appli-
cation with the heterogeneously distributed hardware. This
software-hardware mapping is performed each time the job
scheduler of the operating system selects a new bunch of ac-
tive threads. The whole subsequent execution of the work-
load is done according to this mapping. We describe more
in detail the mapping policy in Section 2.1.

The number of hardware contexts and width of each
pipeline may vary from pipeline to pipeline. So, an hdSMT
microarchitecture may be comprised of both narrow single-
threaded and wide multithreaded pipelines, as well interme-

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

diate pipelines. Depending on the resource needs of each
application and the interaction between application behav-
ior, more than one application may be mapped to a single
pipeline. This distribution of the hardware contexts along
the chip can be profited to turn off idle pipelines whenever
the number of running applications does not reach the num-
ber of hardware contexts. This is also applied in the Het-
erogenous Multi-Core architecture [7], turning off idle het-
erogeneous cores. The main difference of our proposal in
this sense is that we can still use the whole budget of physi-
cal registers and memory space to improve the performance
of the running applications, since they are shared by all pi-
pelines.

Notice that multipipeline-awareness in hdSMT uncovers
new fetch policies not available in conventional SMT pro-
cessors. The shared fetch engine is limited by the num-
ber and width of the instruction cache ports. However, the
number of instructions that each pipeline accept per cycle
may vary from pipeline to pipeline. In order to decouple
the fetch engine from the characteristics of each specific
pipeline it feeds, some small buffers are added before each
pipeline (see Fig. 1). Thus, the fetch engine inserts in-order
the fetched instructions at its own rate while each pipeline
extracts in-order instructions according to its width. The
fetch policy takes into account these buffers in order to ap-
propriately balance the instructions fetched among the pi-
pelines. Depending on the pipeline set characteristics, this
may result in a wider global decode bandwidth since all pi-
pelines are fed from their private buffer each cycle.

2.1 Mapping policies in hdSMT

The impact of static partitions of the hardware may be
either productive or counterproductive depending on the re-
source partitioned. Thus, as showed in [12], while statically
partitioning instruction queues provides good performance,
an static division of the issue bandwidth has a negative im-
pact on throughput.

In order to avoid this penalty, the hardware in the hdSMT
architecture is heterogeneously distributed and a thread-to-
pipeline mapping policy is applied. The success in avoiding
this negative effect will depend on the ability of the mapping
policy to map high-performing threads to wide pipelines, to
profit from their wide issue bandwidth.

In this work we have used a simple profile-based heuristic
policy that uses the memory behavior of each thread to do
the mapping. By means of profile information, the active
threads are arranged by the number of data cache misses
and assigned to the pipelines. The full mapping process is
as follows:

1. Arrange all active threads by the number of data cache
misses in a list (T). The first thread in T is the one with
the lesser number of misses.

2. Arrange all pipelines by their width in a list (P). The
first pipeline in P is the widest one.

3. Map the first thread in T to the first pipeline in P.

4. If this is the first assignment, and there are more avail-
able hardware contexts than active threads then remove
the top of the list P.

5. Remove the top of the list T.

6. If all the hardware contexts of the pipeline in the top
of the list P are busy then remove the top of the list P.

7. If list T is not empty continue in step 3.

Regarding interaction among applications, it is assumed
that applications with a similar number of data cache misses
behave similarly and therefore can share a single pipeline.
Thus, the negative scenario in which applications with a bad
memory behavior hinder applications with a good memory
behavior is avoided. In this sense, our mapping policy as-
sumes that adjacent applications in the list T behave simi-
larly and consequently could share a single pipeline.

In order to match each application with the appropriate
pipeline, our mapping policy makes this simple assump-
tion: the number of data cache misses of an application is
inversely proportional to the pipeline width required. The
more data cache misses occurred during an application ex-
ecution, the more resources will be held by that applica-
tion while each miss is resolved. By doing so, we expect to
match each application with the most appropriate pipeline,
that is the one in which it is obtained the highest perfor-
mance but involving the lowest resource budget.

3 Area Cost Model

In this work we evaluate different microarchitectures,
which involve different hardware budgets. Since compar-
ing the results produced by microarchitectures with differ-
ent amount of resources may be quite unfair, we need some
complexity measurement to guide this evaluation. Quan-
tifying complexity is a tricky task and giving a single and
comparable measurement is even harder to accomplish. In
this paper we follow a quite generalized approach and use
the area (in mm2) of the processor as a metric of its “com-
plexity”. Although complexity is not proportional to area
in all cases, it gives a quite accurate idea of the resultant
complexity and is reasonably easy to be measured.

To estimate the area of each configuration we employ the
Karlsruhe Simultaneous Multithreaded Simulator [14, 15,
16]. On top of this area estimation tool we develop our area
cost model. Since both hdSMT and SMT approaches share
the same register file and caches, we have removed them
from the model to simplify the results. However, since in
hdSMT these resources are shared among all pipelines, the
additional logic cost is taken into account. It is added to the

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

execution core of each pipeline, as additional hardware for
data access. The hdSMT fetch engine also needs some ad-
ditional logic. Although its characteristics are similar to the
SMT one, multipipeline support requires some extra logic.
Taking into consideration Burns and Gaudiot work in quan-
tifying SMT layout overhead [1, 2], we have extrapolated
single to multipipeline environment area overhead from sin-
gle to multithreading environment. So we have estimated
the area overhead of the execution core within each pipeline
in a 10%. The conventional SMT fetch engine area over-
head, when applied to a hdSMT multipipeline environment,
has been estimated in a 20%.

In our evaluation, we use four different models of
pipeline, named M8, M6, M4, and M2. The number in each
model name gives a hint of the amount of resources it has
been devoted. Our conventional monolithic SMT baseline
processor is represented by the M8 model. The remainder
models represent pipelines with reduced resources budget
with respect to the baseline. The functional units are among
the private resources of each pipeline. In order to choose
the most appropriate number of functional units for each
pipeline, we evaluated the performance obtained as we re-
duced them, starting from the baseline model (M8). With
all other resources changed to the pipeline new values, in
each case it was chosen the number of functional units that
kept the slowdown below the 2%.

Our area cost model considers the total area as the sum,
for all constituent pipelines, of the instruction fetch, de-
code, dispatch, execution core, and instruction completion
stages plus the decode, dispatch, and completition queues.
In hdSMT and homogeneously clustered SMT configura-
tions, comprised of combinations of M6, M4, and M2 mod-
els, only one instruction fetch stage is included in the total
area calculus. In Fig. 2.(a) the amount of resources devoted
to each pipeline model is shown. Additionally, we have
assumed a per-thread 256-entry ROB in all configurations,
both SMT and hdSMT. In Fig. 2.(b) we show the area esti-
mation of each model according to our area cost model. All
estimations have been made in 0.18 µm, as in [1], to ease
our area overhead extrapolations. Notice that in Fig. 2.(b)
M6, M4, and M2 pipelines are accompanied by an instruc-
tion fetch stage a 20% bigger than the baseline (M8) one.
Each of them represent in fact an hdSMT processor with a
single pipeline, the one measured in each case.

Finally, as shown in Fig. 2.(a), our SMT baseline (M8)
is not able to execute more than four threads. Although
adding additional hardware contexts increases the total area
of an SMT processor, as Burns and Gaudiot evaluate in [1],
we assume no additional area overhead for this model when
adding two additional hardware contexts; in order to exe-
cute workloads of six threads on it.

M8 M6 M4 M2

Hardware Contexts 4 2 2 1

Max. Instr./cycle 8 6 4 2

Max. Threads/cycle 2 2 2 1

Queues (IQ/FQ/LQ) 64 32 32 16

Integer Func. Units 6 4 3 1

FP Func. Units 3 2 2 1

LD/ST Units 4 2 2 1

a) Resources.

0

20

40

60

80

100

120

140

160

180

M8 M6 M4 M2

mm
2

Completion Queue
Dispatch Queue
Decode Queue
Instruction Completion
Execution Core
Instruction Dispatch
Instruction Decode
Instruction Fetch

b) Area estimation.

Fig. 2. Pipeline models.

4 Simulation Setup

We use a trace driven SMT simulator derived from SMT-
SIM [18]. The simulator consists of our own trace driven
front-end and an improved version of SMT-SIM’s back-end,
that provides multipipeline support among others. Both the
monolithic SMT and the multipipeline configurations have
an 8 stage pipeline depth. Our simulator also permits exe-
cution along wrong paths by having a separate basic block
dictionary in which information of all static instructions is
contained.

As mentioned earlier in Section 3, we use four different
models of pipelines: M8, M6, M4, and M2. Our monolithic
SMT baseline processor is represented by model M8. Ad-
ditionally to model characteristics shown in Fig. 2.(a), the
baseline configuration, used in both monolithic and multip-
ipeline configurations, is shown in Table 1. Besides, since
hdSMT requires additional logic to handle multipipeline
register file sharing we duplicate the number of cycles re-
quired by register reads/writes in hdSMT configurations.
Thus, register reads/writes have a latency of 1 cycle in case
of a monolithic SMT processor as against the 2 cycle la-
tency of the hdSMT processors.

In our experiments, we adopt the FLUSH [17] fetch pol-
icy for the baseline (M8) case. This fetch policy, built on top
of ICOUNT 2.8 [19], predicts an L2 miss every time a load
spends more cycles in the cache hierarchy than needed to
access the L2 cache. In case of L2 miss, the instructions af-
ter the L2 missing load are flushed, and the offending thread
is stalled until the load is resolved. Thus, the resources used
by the offending thread are freed and it does not compete

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

Branch Predictor perceptron (4K local, 256 perceps)
BTB 256 entries, 4-way associative
RAS* 256 entries
ROB Size* 256 entries
Rename Registers 256 regs.
L1 I-Cache 64KB, 2-way, 8 banks
L1 D-Cache 64KB, 2-way, 8 banks
L1 lat./misspenalty 3/22 cyc.
L2 Cache 512KB, 2-way, 8 banks
L2 latency 12 cyc.
Main Memory Latency 250 cyc.
I-TLB/D-TLB/TLB missp. 48 ent. / 128 ent. / 300 cyc.

Table 1. Simulation parameters (resources
marked with * are replicated per thread)

for new resources until the load is resolved. This allows the
other threads to proceed while the stalled thread is waiting
for the outstanding cache miss.

In all other cases, we adopt the L1MCOUNT fetch policy,
a variant of the DCache Warn fetch policy [3]. This fetch
policy keeps track of the number of inflight loads. Threads
are arranged by the number of inflight loads they have and
given fetch priority accordingly. Threads with fewer num-
ber of inflight loads have priority. In case of equal number
of inflight loads, threads allocated to wider pipelines have
priority over those in narrower pipelines. Finally, in case
of pipeline coincidence, the ICOUNT 2.8 policy is applied.
Regardless of the fetch policy, all simulations are limited
to 8 instructions fetchable per cycle, from a maximum of 2
threads. In order to decouple the shared fetch engine from
each pipeline characteristics, we have put a buffer between
the fetch engine and each pipeline (see Fig. 1). The size of
these buffers is 32 entries, for M6 and M4 pipeline models,
and 16 entries, for M2 pipeline model.

We use the SPEC2000 integer benchmark suite. From
them, we have collected traces of the most representative
300 million instruction segment of each benchmark, fol-
lowing the idea presented in [13]. Each program is com-
piled with the –O2 –non shared options using DEC Alpha
AXP-21264 C/C++ compiler and executed using the refer-
ence input set. Tables 2 and 3 show the workloads used
in our simulations. We have used workloads including 2,
4, and 6 threads. Workloads are classified according to
the characteristics of the included benchmarks: with high
instruction-level parallelism (ILP), with bad memory be-
havior (MEM), or a mix of both (MIX). Due to the char-
acteristics of SPECint2000, with few benchmarks that are
really memory bounded, MEM workloads are only feasible
for 2 and 4 threads.

In each experiment, we strictly focus on the period of time
in which all the initial threads share the processor. The ob-
jective in each case is evaluating the behavior of each mi-
croarchitecture with workloads of two, four and six threads.
This means that each simulation finishes as soon as one
thread contained in the evaluated workload finishes execut-
ing 300 million instructions.

Wld Benchmarks T Wld Benchmarks T

2W1 eon, gcc I 4W1 eon, gcc, gzip, bzip2 I
2W2 crafty, bzip2 I 4W2 crafty, bzip2, eon, gzip I
2W3 gap, vortex I 4W3 gap, vortex, parser, crafty I
2W4 mcf, twolf M 4W4 mcf, twolf, vpr, perlbmk M
2W5 vpr, perlbmk M 4W5 vpr, perlbmk, mcf, twolf M
2W6 vpr, twolf M 4W6 gzip, twolf, bzip2, mcf X
2W7 gzip, twolf X 4W7 crafty, perlbmk, mcf, bzip2 X
2W8 crafty, perlbmk X 4W8 parser, vpr, vortex, twolf X
2W9 parser, vpr X 4W9 vpr, twolf, gap, vortex X

Table 2. Two and four threaded workloads
(I=ILP, M=MEM, X=MIX)

Wld Benchmarks T

6W1 gzip, gcc, crafty, eon, gap, bzip2 I
6W2 gcc, crafty, parser, eon, gap, vortex I
6W3 gzip, vpr, mcf, eon, perlbmk, bzip2 X
6W4 vpr, mcf, crafty, perlbmk, vortex, twolf X

Table 3. Six threaded workloads.

4.1 Microarchitectures and Metrics

In our experiments, we evaluate several multipipeline mi-
croarchitectures, both homogeneously and heterogeneously
distributed. All these multipipeline microarchitectures are
implementations of the hdSMT architecture1. In Fig. 3 we
show the area estimation of all microarchitectures evalu-
ated. Beneath each area estimation appears the microar-
chitecture name, which stands for the number and type of
pipeline models involved. So, the 2M4+2M2 microarchi-
tecture is comprised of 2 pipelines of type M4 plus two pi-
pelines of type M2 (see Fig. 2 for specific details of each
pipeline type). From left to right, the first microarchitec-
ture (M8) in Fig. 3 represents our monolithic SMT baseline.
The next two microarchitectures (3M4 and 4M4) are ho-
mogeneous clustered hdSMT microarchitectures. Finally,
the last three microarchitectures represents the truly hdSMT
microarchitectures. According to Fig. 3, all but two mi-
croarchitectures (4M4 and 1M6+2M4+2M2) require less
area than the monolithic SMT baseline. That is, they are
“simpler” than the SMT baseline.

For each microarchitecture we evaluate its performance
(IPC) for all workloads. However, since each microarchi-
tecture has a different resource budget and consequently
a different performance potential, we also take into ac-
count the complexity involved. In order to make a fairer
comparison we combine the performance and the complex-
ity of each microarchitecture in a single metric. Thus,
in this paper we also provide results measured in Perfor-
mance per Area, which is obtained by dividing the resulting
performance of a microarchitecture by its area (in mm2).
This additional metric allows to evaluate the “complexity-
effectiveness” of each microarchitecture.

1Although the homogeneous ones do not obey the hdSMT principle of
heterogeneous distribution of resources.

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

M8
3M

4
4M

4

2M
4+

2M
2

3M
4+

2M
2

1M
6+

2M
4+

2M
2

m
m

²
CQ

DIQ

DEQ

IC

EX

DI

DE

IF

-17% -27%

+10,14%
+2%-1%

Fig. 3. Area estimation of evaluated microar-
chitectures.

5 Simulation Results

In this section, we evaluate and compare monolithic SMT,
homogeneously distributed hdSMT, and heterogeneous dis-
tributed hdSMT processors. For each workload, three mea-
surements are given. First, the BEST result, obtained us-
ing an oracle thread mapping policy, gives the maximum
performance of the microarchitecture. Second, the HEUR
result gives the performance obtained by the microarchitec-
ture using the heuristic thread mapping policy presented in
Section 2.1. Finally, the WORST result gives the perfor-
mance obtained by the microarchitecture in case of apply-
ing in each case the worst possible thread-to-pipeline map-
ping. Special cases are the baseline (M8) and the two-
threaded workloads of homogeneous distributions (3M4
and 4M4). Since the baseline is not multipipelined, no
thread-to-pipeline mapping policy is needed and so only
one measurement is given. In two-threaded workloads,
when all pipelines are of the same sort the three measure-
ments (BEST, HEUR, WORST) coincide.

Fig. 4 shows the raw performance results (measured in
IPC) for all microarchitectures evaluated. In each case,
the harmonic mean of all workloads of a same type and
size is shown. These results point out that, although some
hdSMT results are quite similar to SMT baseline ones, the
hdSMT results are exceeded by the SMT baseline ones
in some cases. Comparing the baseline (M8) and best-
performing hdSMT (1M6+2M4+2M2) means, we got base-
line speedups over hdSMT of 5%, 4% and 15% in ILP,
MEM, and MIX workloads respectively. In the first two
cases, the mean performance of hdSMT is not quite bad
considering that the hdSMT microarchitecture is able to ex-
ecute up to 8 threads while the resource budget of the base-
line (M8) in fact is not able to execute more than 4 threads
(as mentioned in Section 3). Nevertheless, the ability to
flush and re-execute instructions of the baseline is crucial in
the MIX scenario. Although this is the general trend, notice
that hdSMT is able to outperform the SMT baseline in the
six-threaded ILP workload scenario (see Fig. 4.(a)).

The previous results strictly take into consideration the
performance that each microarchitecture obtains executing
the given workloads. However, each microarchitecture in-
volves a different amount of resources; and a different
power consumption among others. To make a fairer com-
parison we show in Fig. 5 the Performance per Area results
for all microarchitectures evaluated. Again, the harmonic
mean of all workloads of a same type and size is shown.
From these results, we can infer that the hdSMT architec-
ture achieves higher performance per area ratios than the
monolithic SMT architecture, that is, better relative results
than SMT using fewer resources. Comparing the baseline
(M8) and best-performance-per-area hdSMT (2M4+2M2)
means, we got hdSMT improvements over the SMT base-
line of 15%, 18% and 10% in ILP, MEM, and MIX work-
loads respectively.

Regarding the homogeneous (3M4, 4M4) or heteroge-
neous distribution (2M4+2M2, 3M4+2M2, 1M6+2M4+
+2M2) of hdSMT processors, results in Figs. 4 and 5 point
out that heterogeneous distributions are better than homo-
geneous ones. Thus, for each case there is a heterogeneous
distribution that overcomes, both in terms of absolute per-
formance and performance per area, all homogeneous dis-
tributions.

From all previous results it can also be inferred that
the thread-to-pipeline mapping policy is a crucial factor in
hdSMT architecture. This can be noticed by comparing
the BEST and HEUR results in Figs. 4 and 5. As an ex-
ample, notice that the 2M4+2M2 hdSMT microarchitecture
obtains the highest performance per area ratios in all but the
four-threaded MEM workload case. In that case, although
the oracle mapping policy obtains a 9% improvement over
the baseline, the heuristic accuracy drops to 76%, result-
ing in a worse result than the baseline. From Figs. 4 and 5
it is also noticeable that the effectiveness of the mapping
policy depends on the specific hdSMT microarchitecture.
Thus, while the heuristic applied in this work achieves 92%
and 96% accuracy in 2M4+2M2 and 1M6+2M4+2M2 mi-
croarchitectures respectively, its accuracy drops to a 88% in
3M4+2M2 microarchitecture.

To summarize, our results point out that the hdSMT
achieves its goal of minimizing the amount of wasted re-
sources. In this sense, it obtains a 13% and 14% improve-
ment in optimizing performance per area over monolithic
SMT and homogeneously clustered SMT, respectively. Re-
garding to raw performance, monolithic SMT obtains in
mean a 6% speedup over hdSMT. Nevertheless, hdSMT ob-
tains in mean a 7% raw performance speedup over homo-
geneously clustered SMT. Finally, the results also indicate
that the thread-to-pipeline mapping policy plays a very im-
portant role in hdSMT.

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

0

1

2

3

4

5

6

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

2 THREADS 4 THREADS 6 THREADS HMEAN

IP
C

BEST
HEUR
WORST

a) ILP Workloads.

0

0,5

1

1,5

2

2,5

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

2 THREADS 4 THREADS HMEAN

IP
C

BEST
HEUR
WORST

b) MEM Workloads.

0

0,5

1

1,5

2

2,5

3

3,5

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

2 THREADS 4 THREADS 6 THREADS HMEAN

IP
C

BEST
HEUR
WORST

c) MIX Workloads.

Fig. 4. Performance comparison.

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

2 THREADS 4 THREADS 6 THREADS HMEAN

IP
C

/A
re

a

BEST
HEUR
WORST

a) ILP Workloads.

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

2 THREADS 4 THREADS HMEAN

IP
C

/A
re

a

BEST
HEUR
WORST

b) MEM Workloads.

0

0,005

0,01

0,015

0,02

0,025

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

M
8

3
M

4

4
M

4

2
M

4
+

2
M

2

3
M

4
+

2
M

2

1
M

6
+

2
M

4
+

2
M

2

2 THREADS 4 THREADS 6 THREADS HMEAN

IP
C

/A
re

a

BEST
HEUR
WORST

c) MIX Workloads.

Fig. 5. Performance per Area comparison.

6 Related Work

Kumar et al. propose in [8] the Heterogeneous Multicore
processor, a CMP processor comprised of heterogeneous
cores. In this proposal, matching the inter-application het-
erogeneity with the statically partitioned hardware is, as in
hdSMT, a prime issue. The main difference between them
comes from their CMP/SMT inclinations. So, in case of
few applications running on the processor, split resources
accross CMP cores as physical registers and L1 caches are
wasted in a Heterogeneous Multicore processor. On the
contrary, an hdSMT can still utilize these resources to im-
prove the performance of the running applications.

Putting aside heterogeneity-awareness, we find in the
literature some prior work that study the combination of
clustering and SMT techniques. Collins and Tullsen ex-
plore in [4] the relation between clustering and SMT. They
show that the synergistic combination of the two techniques
minimizes the IPC impact of the clustered architecture, and
even permits more aggressive clustering of the processor
than is possible with a single-threaded processor. In con-
trast, the hdSMT approach explores the benefits of a hetero-
geneous clustering to obtain high performance at a reduced
complexity cost. Raasch and Reinhardt quantify in [12]
the performance impact of resource partitioning policies in
SMT machines, focusing on the execution portion of the

pipeline. They found out that for storage resources, such as
the instruction queue, statically allocating an equal portion
to each thread provides good performance, in part by avoid-
ing starvation. In contrast, they also showed that static divi-
sion of issue bandwidth has a negative impact on through-
put. SMTs ability to multiplex bursty execution streams
dynamically onto shared functional units contributes to its
overall throughput. As we have shown in this paper, a het-
erogeneous partition of issue bandwidth can be possitive if
it is appropriatily matched with the heterogeneous needs of
the running applications. The hdSMT approach also dif-
fers from these prior studies in the granularity applied in the
cluster distribution. Notice that in hdSMT entire threads are
assigned to pipelines, instead of the instruction level applied
in these studies. So, dependent instructions are always exe-
cuted in the same cluster, avoiding additional latencies and
complexity.

Other proposals are more concerned in reducing the
power consumption by means of the clustering technique.
Thus, Latorre et al. [9] propose a multithreaded clustered
microarchitecture as a way to deal with power consump-
tion and wire delay problems. In this microarchitecture
an evenly clustered front-end maps running threads to an
evenly clustered back-end where the instructions are exe-
cuted. This clustering also extends to resources such as
L1 caches and register file, that are spread out the different

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

clusters. Lee and Gaudiot also propose in [10] a symmetric,
dual unified cluster SMT architecture as a way of reducing
power consumption without significantly reducing its per-
formance and throughput.

As far as we know, the hdSMT architecture is the first al-
ternative SMT architecture in which the hardware is hetero-
geneously clustered in order to reduce the amount of wasted
resources. By an appropriate matching of the heterogeneous
applications with the heterogeneously distributed hardware,
hdSMT achieves a better utilization of a reduced hardware
budget, resulting in a better performance per area ratio.

7 Conclusions

The heteregeneity among application behaviors turns cur-
rent architectures overdesigned for most cases, obtaining
high performance but wasting a lot of resources to do so.
In this paper we have presented the Heterogeneously Dis-
tributed Simultaneous Multithreading (hdSMT) architec-
ture, an SMT alternative in which the running threads are
mapped to a heterogeneosly clustered hardware according
to this heterogeneity. The results obtained in this work indi-
cate that hdSMT reduce this waste of resources at reduced
budget, obtaining a 13% and 14% improvement in optimiz-
ing performance per area over monolithic SMT and homo-
geneously clustered SMT, respectively.

In hdSMT, the thread-to-pipeline mapping policy is a
prime concern. In this work, we have presented a simple
profile-based heuristic policy that achieves a 92% average
accuracy. Raw performance results also point out that, in
future hdSMT implementations, this mapping should prob-
ably be made dynamically in order to better adapt to the
dynamic changes in program behaviour during execution.

Acknowledgements

This work has been supported by the Ministry of Edu-
cation of Spain under contract TIN2004–07739–C02–01,
CEPBA and the HiPEAC European Network of Excellence.
Carmelo Acosta is also supported by the Ministry of Sci-
ence and Technology of Spain grant BES–2002–0015.

References

[1] J. Burns and J.L. Gaudiot. Quantifying the SMT Layout
Overhead - Does SMT Pull its Weight? In Proc. of HPCA-6,
pages 109–120, 2000.

[2] J. Burns and J.L. Gaudiot. SMT Layout Overhead and Scal-
ability. IEEE Transactions on Parallel and Distributed Sys-
tems, 13(2):142 – 155, February 2002.

[3] F. J. Cazorla, E. Fernández, A. Ramirez, and M. Valero.
DCache Warn: An I-Fetch policy to increase SMT efficiency.
In Proc. of IPDPS-18, pages 24–34, 2004.

[4] J. D. Collins and D. M. Tullsen. Clustered multithreaded
architectures – Pursuing both IPC and cycle time. In Proc.
of IPDPS-18, pages 46–57, 2004.

[5] A. El-Moursy and D. H. Albonesi. Front-end policies for
improved issue efficiency in SMT processors. In Proc. of
HPCA-9, 2003.

[6] L. Hammond, B. A. Nayfeh, and K. Olukotun. Single-chip
multiprocessor. In IEEE Computer Special Issue on Billion-
Transistor Processors, 1997.

[7] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA Heterogeneous Multi-Core Ar-
chitectures: The Potential for Processor Power Reduction.
In Proc. of MICRO-36, 2003.

[8] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA heterogeneous multi-core architec-
tures for multithreaded workload performance. In Proc. of
ISCA-31, 2004.

[9] F. Latorre, J. González, and A. González. Back-end Assign-
ment Schemes for Clustered Multithreaded Processors. In
Proc. of ICS-18, 2004.

[10] S. W. Lee and J. L. Gaudiot. Clustered microarchitecture
simultaneous multithreading. In Proc. of EuroPAR-9, pages
576–585, 2003.

[11] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The case for a single-chip multiprocessor. In
Proc. of ASPLOS-7, 1996.

[12] S. E. Raasch and S. K. Reinhardt. The Impact of Resource
Partitioning on SMT Processors. In Proc. of PACT-12, 2003.

[13] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. In Proc. of PACT-10, pages 3–14,
2001.

[14] U. Sigmund, M. Steinhaus, and T. Ungerer. On Performance,
Transistor Count and Chip Space Assessment of Multimedia-
enhanced Simultaneous Multithreaded Processors. In Proc.
of MTEAC-4, 2000.

[15] M. Steinhaus, R. Kolla, J. L. Larriba-Pey, T. Ungerer, and
M. Valero. Transistor Count and Chip-Space Estimation
of SimpleScalar-based Microprocessor Models. In Proc. of
WCED-2, 2001.

[16] M. Steinhaus, R. Kolla, J. L. Larriba-Pey, T. Ungerer, and
M. Valero. Transistor Count and Chip-Space Estimation of
Simulated Microprocessors. In T. R. UPC-DAC-2001-16,
UPC, 2001.

[17] D. M. Tullsen and J. A. Brown. Handling long-latency
loads in a simultaneous multithreaded processor. In Proc.
of MICRO-34, 2001.

[18] D. M. Tullsen, S. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proc. of
ISCA-22, 1995.

[19] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithreading
processor. In Proc. of ISCA-23, 1996.

[20] W. Yamamoto and M. Nemirovsky. Increasing superscalar
performance through multistreaming. In Proc. of PACT,
1995.

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

