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Abstract

This paper presents the alternatives available to support
threadprivate data in OpenMP and evaluates them.
We show how current compilation systems rely on custom
techniques for implementing thread-local data. But in fact
the ELF binary specification currently supports data
sections that become threadprivate by default. ELF
naming for such areas is Thread-Local Storage (TLS). Our
experiments demonstrate that implementing threadprivate
based on the TLS support is very easy, and more efficient.
This proposal goes in the same line as the future
implementation of OpenMP on the GNU compiler
collection. 

In addition, our experience with the use of threadprivate
in OpenMP applications shows that usually it is better to
avoid it. This is because threadprivate variables reside in
common blocks and they impede the compiler to fully
optimize the code. So it is better to keep threadprivate as a
temporary technique only to ease porting MPI codes to
OpenMP. 

1. Introduction and motivation

OpenMP [16] is a mature programming model for
shared memory architectures, providing incremental
parallelization over sequential codes. An OpenMP
programmer usually starts from an initial sequential code,
in C/C++ or Fortran and adds pragmas/directives to
express the parallelism. A number of parallel constructs
are offered, namely, parallel regions, loops, sections and
combinations of them. Usually, it supports the exploitation
of multiple levels of parallelism.

Nearly during the past decade, from the very beginning
of OpenMP, we have been developing a threading library
and a compilation infrastructure supporting this shared-
memory programming model. NthLib [13] [14] [1] was
designed to efficiently support multiple levels of
parallelism, and as much fine grained as possible. The
compilation infrastructure (Nanos Compiler [6]) was
initially based on Parafrase-2 [17], and it is still used in the

experiments for this paper. We are currently migrating to a
new compilation infrastructure named Nanos Mercurium
[2].

During all this time, there has been one OpenMP
construction that has consistently resisted to be
implemented in our environment. That was the
threadprivate directive. Every attempt was giving too
complex and ineficient implementations, or not general
enough. We have also tried to make the work on the
compiler side simple and let the run-time system to deal
with most of the features. Also, initially, threadprivate
constructions were rarely found in OpenMP applications.
But this is not currently the case, specially since more and
more applications written initially in MPI are being
recoded using OpenMP. For this reason it was important to
find a way to implement threadprivate in a general and
efficient way.

Our current proposal is simple, both from the compiler
and the runtime system perspective, mainly because it is
based on a new feature provided by the Executable and
Linking Format (ELF) specification, which allows to
implement thread-local storage (TLS) efficiently.

The rest of the paper is organized as follows: Section 2
outlines the current support for the threadprivate directive
found in several comercial compilers supporting OpenMP.
This section also presents the related work. Section 3
presents our approach to implement threadprivate based
on the TLS extension to ELF files. Section 4 shows the
evaluation of our proposal with respect to not using the
threadprivate directive at all. Finally, Section 5 concludes
and presents future work. 

2. Current support for threadprivate

Currently, OpenMP compilers support threadprivate
variables by letting the runtime system to allocate a
memory region for each thread. This is usually done during
the initialization of the runtime system. The original
variable is declared as a common area in the binary file. It
is used as the place where the sequential code and the
master thread access to find the values. The amount of



memory to be allocated for each thread is determined from
the size of such original variable.

The program code is then changed, so that every access
to the threadprivate variable is done by getting a pointer to
the thread area first and then applying an offset to access to
actual value. The code transformation used in the IBM XL
compilers is shown in Figure 1. This transformation must
be done once for every different threadprivate common
block accessed in a subroutine.

This way of implementing the threadprivate access has
a large overhead compared to a usual variable access,
residing either globally or in the stack. A simple
microbenchmark consisting of the subroutine presented in
Figure 2 has been developed to reveal this overhead. The
subroutine (tps) does a single variable access for each
invocation. This way, its execution time is heavily
dependent on the way such an access is implemented,
either as a regular variable or as a threadprivate variable.
Accessing the variable as a threadprivate value has, in this
particular situation, a cost which easily doubles the cost of
accessing a variable in a regular common block. The
effects of this overhead in the execution time are shown in
Figure 3, using different operating systems, OpenMP
compilers, and architectures. All executions are done with
a single thread, so that only the overhead introduced by the
different code generation is shown. In these tests, the
subroutine shown in Figure 2 is executed 5 million times
and the execution time is measured.

The experiments shown in this Figure are executed in a
Linux platform based on Pentium Xeon [11] and the Linux
Intel Fortran compiler 8.1 [10], a Linux platform based on
POWER5 [8] and the IBM XLF 10.1 compiler [9], and a
Solaris platform based on a ULTRA SPARC processor
[22] and the SUNWspro 10 Studio [20]. All these
environments use a similar technique for implementing
threadprivate variables, as explained above in this section.

 

As it can be observed, the results consistently show that
the implementation of threadprivate variables in these
three different architectures adds much more overhead
with respect to an access to a common block. The
execution time of the microbenchmark in each one of the
architectures depends only on the processor speed. The
benchmark is very small, it fits in the cache memory of the
processors, so there are no memory effects. This is the
reason why the Pentium architecture running at 2.8 Ghz. is
the fastest executing this microbenchmark.

There exist some research OpenMP environments that
use also similar techniques to implement the threadprivate
directive. Among them, the Balder run-time system [12] is
based on the OdinMP compiler to transform all accesses to
threadprivate symbols towards an area previously
allocated. This code transformation adds a call to the run-
time system to determine a thread pointer to be used for
such access. The Omni [19]compiler and runtime system
also generates a code based on a runtime system call to get
access to the threadprivate data.

     subroutine tps (val)
        double precision val
        double precision num
        common /tp_area/ num
#ifdef TP
!$omp threadprivate (/tp_area/)
#endif

        num = num + val
      end

Figure 2: Subroutine optionally
accessing a threadprivate variable
or a variable in a regular common
block

Figure 3: Overhead of accessing
threadprivate data
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Figure 1: (top) Fortran code, (bottom)
assembly language code generation to access
a threadprivate variable 

       subroutine tpsimple (val)
           integer val, tp_data
           common /tp_area/ tp_data
!$omp threadprivate (/tp_area/)
           tp_data = val
       end

tpsimple:
          ...        ; argument is r3 (pointer to val)
   or        r31,r3,r3       ; put argument into r31
   bl         _xlGetThStorageBlock       ; get address of thread data
   or         r4,r3,r3       ; into r4
   addis    r3,r0,$.TPK$.tp_area@ha    ; load address of common
   addi     r3,r3,$.TPK$.tp_area@l       ; block into r3
   bl         _xlGetThValue     ; get pointer to tp_data in r3
   lwz      r0,0(r31)     ; do the real data copy 
   stw      r0,0(r3)
...



From the perspective of a Fortran compiler,
threadprivate values always reside in a common block.
This is true even if the threadprivate directive is applied to
individual variables, as it is allowed in OpenMP. This is to
ensure that the values are kept across parallel regions. In
C, they reside in a global variable. Fortran common blocks
and C global variables (scalars, arrays, and structures) are
the same from the perspective of the linker. This is the way
C programs can access values in Fortran commons, and
viceversa, allowing interoperability between these
languages. So it is not a matter of the threadprivate
directive, but a matter of optimizing access to common
blocks and global variables. With variables residing in
common blocks, the compilers are tied to the common
block behaviour and they can not apply certain code
optimizations: It is not possible to place a threadprivate
scalar value in a processor register unless the compiler
does interprocedural analysis: The code inside a function
can cache the value in a register while it does not call
another function. When a new call is reached, the value
must be stored in its place in memory, so that the new
function (possibly not available to the compiler, but to the
linker) will get the initial value of the variable from the
common block. Threadprivate simply makes more
complex loading and storing the value from memory,
increasing the overhead, as the previous experiment shows.

In the next section, we present an alternative
implementation that reduces this overhead to a small
fraction.

3. Implementing threadprivate using the ELF
TLS specification

Starting in January 2002, the ELF binary file
specification [3][23][18] includes the possibility to declare
and use thread-local storage. Thread-local storage contains
thread-local variables. A thread-local variable is
implemented in such a way that each thread in the program
can assign a different value to it. Each copy of the variable
has a different address. It is the responsibility of the run-
time system to allocate and manage the memory area to
support the local storage of each thread. Programmers can
easily define thread-local variables using the C language
(non-standard) __thread attribute when declaring global or
static variables [3]. Variables declared with this attribute
are allocated by the compiler in two new object file
sections: a .tdata section is used to place initialized
TLS variables, and a .tbss section holds non-initialized
variables. Any scalar, array or structure variable in C can
be attributed as __thread. 

While thinking in a way to implement the threadprivate
directive for our OpenMP runtime system (Nanos), we
thought that using this feature should provide several
benefits:

� Ease the development of our prototype source-to-
source compilers (NanosCompiler [6] and
Mercurium [2]).

� Simplify code generation with respect to other
techniques.

� Achieve better performance than current
implementations.

� Achieve automatic interoperability between C
/C++ and Fortran (assuming the compilers of
these languages all use the same conventions for
threadprivate).

In the next subsections, we describe the modifications
introduced in the compiler and inside the run-time system.

3.1. Modifications to the compiler 

The approach to achieve the previous benefits from the
compiler was simple: every variable in a common block
annotated as threadprivate should be attributed as
__thread in the code generated by the compilers. This is
what NanosCompiler and Mercurium do to translate the
threadprivate directive. Any variable reference is kept the
same. __thread variables will be allocated in the .tbss
and .tdata sections and the ELF specification will take
care of the rest.

This solution is fine in the case of C/C++: we can use
native compilers supporting the __thread attribute in the
target system to generate machine code (gcc  supports it).

The problem appears in Fortran: even the Fortran
specification 2003 [4] does not include any support for
threading, so our compiler cannot generate anything to
express thread-local storage. The Fortran 2005
specification , which is currently under discussion (and
planned for 2008) comes with the solution. It includes a
subset of Co-Array Fortran [15], in particular the
possibility of expressing per-image variables, where each
image can be a different thread running on the same
address space, or a process running in a different node.

But meanwhile, we thought useful to look inside the gcc
compiler [5] to see whether it could be easy to include
some (partial) threadprivate support. At that time gcc 4.0
was already stable enough to be used with our benchmarks,
so we selected it for examination.

It happens that gcc 4.0 includes gfortran, with good
support for Fortran 95. As gfortran and gcc share the same
backend for generating assembly code in each architecture,
it seemed reasonable to modify it, including our proposed
extensions.

The changes to gfortran were simple:
� Recognize a new token to express that a variable

is thread-local.
� Mark the thread-local symbol with the same flag

used in C.
� Allow the generation of common thread-local

data. This was already supported by the compiler,



but it was forbidden by a previous conditional
statement.

� Add code generation support for .tdata and
.tbss sections.

With these changes, gfortran generates common blocks
into the .tbss and .tdata sections and the appropriate
code to access them correctly. In addition, they are
accessible from object files generated by GCC using
variables with the same name and the __thread attribute.
We know that the development of OpenMP in gfortran is
going in the same direction [7].

With our current approach, the subroutine shown in
Figure 2 is transformed in the intermediate and assembly
code presented in Figure 4. The assembly code is presented
in its Intel Pentium version. 

In the Figure, we can observe that the code generated is
much more simple compared to the code presented in
Figure 1. In particular, as the thread has a dedicated
register (gs) pointing to the TLS area, there is no need to
call a function to obtain this pointer
(_xlGetThStorageBlock in Figure 1).

3.2. Runtime system support

As our OpenMP runtime system (NthLib [1]) runs
directly on top of the kernel-level abstraction offering the
parallelism, it has been modified to create the kernel level
entities with the TLS characteristics. 

The usual case is the kernel-level thread, which can be a
thr in Solaris, or a clone in Linux. In Solaris, just linking
against the librt system library is enough to have available
a memory region for each thread to act as the thread-local
storage. The mechanism used is described in [21].

In the Linux implementations on Pentium and Power
processors, we have modified NthLib to allocate a region
of thread-local storage for each processor requested for
OpenMP. This has been an easy task, as the address space
of the parallel applications was already well organized.
Figure 5 shows the resulting organization of the address
space. We try to leave as much space as possible on the
lower addresses (left part of the Figure) to the application
code and data. We let the operating system map the
dynamic libraries on its standard address. At the higher
addresses (right hand side of the figure), we map the thread
stacks and the thread-local storage (TLS) areas.

This is different from what we have seen in the Pthreads
library in Linux, which maps the TLS areas inside the
thread stacks. This has a strange effect for the programmer:
the TLS size depends on the size of the pthread stacks, and
not on the size of the actual .tbss and .tdata sections.
This means that the pthreads library attribute
pthread_stack_size is in fact controlling the size of both
the stack and the TLS areas for each pthread.

After allocating the TLS areas and the stacks for each
kernel thread, a simple machine depending code tells the
operating system where is the TLS for each thread. The
TLS ELF specification states that from now on, during
execution, any TLS data should be accessed using a
specific processor general purpose register. This register is
the segment register gs in the Pentium architecture, and the
r13 general purpose register in the Power architecture. The
OS loads the register and the execution continues
normally.

With the previous modifications both in the compiler
and the runtime system, it has also been possible to
implement the copyin [16] clause for threadprivate
variables. When copyin is specified, the master thread
enters a barrier after spawning a parallel region, and waits
while the slave threads access its TLS area to copy the
values of the variables specified. After the copy, each
thread joins the master in the barrier, and the parallel
execution starts with all the threads having the same
variable setup.

4. Evaluation

We have evaluated the TLS proposal for threadprivate, on
one hand with the same microbenchmark used for the
motivation, and on the other hand, using the NAS
benchmarks written in Fortran which use the threadprivate
directive (BT, SP, LU and CG). We have used Classes S
and A of the NAS benchmarks to show how the technique
influence the performance of applications with different
working-set sizes.

SUBROUTINE tps (val)           tps_:
 IMPLICIT  NONE               push    %ebp
 DOUBLE PRECISION  val               mov     $NUM_OFF, %edx
 DOUBLE PRECISION, TLS :: num         mov     %esp, $ebp
 COMMON /tp_area/  num               mov     8(%ebp), %eax

              fldl       (%eax)
  num = num + val               faddl    %gs:(%edx)
END               fstpl     %gs:(%edx)

              pop      %ebp
              ret

Figure 4: Intermediate code (left) and assembly
language (right) generated to access num as a
threadprivate variable (gs is the thread register)

Figure 5: Structure of the virtual address
space
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4.1. Evaluation on the microbenchmark

The results of the threadprivate microbenchmark
generated using our modified gfortran compiler are
presented in Figure 6. As the benchmark has been now
compiled with gfortran, the results labeled common* are a
little bit different than the previous results presented,
labeled common in Figure 3. The important observation
here is that the performance to access threadprivate
variables is now very similar to when accessing a regular
common block.

4.2. Evaluation of the NAS benchmarks

We have taken the NAS benchmarks version 3.2, where
four of the benchmarks written in Fortran use the
threadprivate directive. The directive is used in different
ways, so that different amount of data is privatized in a
per-thread manner, depending on the benchmark. Table 1
Shows how BT and SP use threadprivate for two common
structures (work_1d and work_lhs) containing around 10
different arrays. In addition, BT has 3 double precision
scalar values on the work_lhs common structure. LU and
CG use threadprivate to make some scalar values private.
Those values are the amount of threads participating on the
parallel region and the thread self identifier (obtained
through the primitives omp_get_num_threads() and
omp_get_thread_num(), respectively). In addition, CG has
the threadprivate structure urando containing two double
precision numbers to compute random numbers in a per-
thread basis. 

The evaluation of the benchmarks has been carried on a
POWER5-based machine with 2 chips, giving a total of 8
hardware threads, running the Linux 2.6 operating system.

Benchmark Scalars Arrays
BT tmp1, tmp2, tmp3 work_1d, work_lhs

SP - work_1d, work_lhs

LU threadinfo -

CG tinfo, urando -

Table 1: Usage of the threadprivate directive in the
Fortran NAS3.2 benchmarks

Evaluation of the CLASS S version. To evaluate the
proposal described in this paper, we decided to compare
the performance obtained with the new implementation of
threadprivate with the same application coded without the
threadprivate directive. It is in fact easy to remove such
directives from the source code in a way that the
application is still running correctly and providing
successful results: The arrays in BT and SP can be made
just private, as there is no reuse of their values across
parallel sections, so they must not be maintained.

In the case of the variables representing the number of
threads and the thread identifier, in LU and CG, they are
simply replaced by private variables that take the value of
omp_get_num_threads() and omp_get_thread_num(), and
that are assigned each time a parallel region using the
variable starts. There are three parallel regions using this
variables in LU and CG. 

presents the evaluation of these benchmarks. It shows
the megaflops per second obtained by the benchmark,
depending on the number of hardware threads used and the
technique used for privatization.

Initially, we started comparing the threadprivate
common version with the private-only version. The three
benchmarks SP, LU and CG had a similar performance,
independently of the kind of privatization used. Observe
that this means that accessing arrays in threadprivate with
our technique offers similar performance to accessing
private arrays located in the stack. On the other hand, the
access to threadprivate scalar values is similar to getting
their value using simple library calls like
omp_get_num_thread(). 

The BT benchmark was the exception: The performance
of the threadprivate version was clearly lower, even when
executed in a single processor. Observe in that the
performance of threadprivate in bt.S with 1 thread is
lower than 700 Mflops/s, while using private variables is
835 Mflops/s. After some thoughts and tests, we found that
the problem was that mixing scalar and array variables in
threadprivate commons was not a good idea. In particular,
any variable residing in a common in Fortran has a
common association, that may forbid some optimizations
to the compiler. For this reason, we also present the
intermediate version (labeled threadprivate variables),
where the threadprivate directive is applied to the
individual variables, instead of to the full common. In this
case, the performance is closer to the private-only solution.
The difference comes from the fact that a common for each
threadprivate variable is still introduced in our code

Figure 6: Performance comparison of the
new threadprivate method
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transformation for such variables, while in the private-only
solution they may be just allocated into a processor
register.

Evaluation of NAS CLASS A. To check that the
performance obtained in the CLASS S is maintained when
the working-set of the benchmarks is increased, we present
in Figure 8 the results for the CLASS A of the
benchmarks.

In this Figure, we can observe that the behaviour of the
benchmarks is very similar. BT reflects the same problem
related to common association when making the common
threadprivate. Still, forcing the disassociation of the
variables in the intermediate approach (labeled
threadprivate variables) is not so good as making them
really private.

It is interesting to comment that the performance of all
the benchmarks is reduced when executed in a small
number of threads, compared to the class S version. The
cause of this is that, as the working-set increases, the
execution suffers from an increment in the number of
cache misses. This effect is nevertheless amortized through
the parallelization in BT, SP and LU: With 4 to 8 threads,
these class A applications perform better than the class S
ones. It is not the same with CG, in which in class A, the
amount of sharing increases with the increase in the
working-set and the performance is comparatively
degraded, with respect to the class S.

5. Conclusions and Future Work

In this paper, we have studied the current techniques
used by various OpenMP compilers to implement
threadprivate variables. A first conclusion is that
threadprivate must be used with care. Do not consider that
a threadprivate variable can be as efficient as a private

variable. Threadprivate implies that variables must be
placed in common blocks to be kept save across parallel
regions. This may impede some optimizations, like
keeping values in registers and the code will be slower. So
use threadprivate only when the variables involved need to
keep their values across functions and parallel regions.

In addition, we have proposed an implementation of
threadprivate based on thread-local storage (TLS), a
support introduced relatively recently in the ELF
specification. We have implemented such proposal in the
gfortran compiler and our OpenMP runtime system
(Nanos). The evaluation of this proposal on a
microbenchmark shows that the fine-grain overhead is
highly reduced and the measurements are close to those
obtained when accessing private variables. Also, it is
shown that the performance obtained from the NAS
benchmarks (Classes S and A) are comparable to the ones
using strictly private variables. Nevertheless, it is also
important to note that using threadprivate variables, and
depending on the way they are finally placed on common
blocks, there are applications (e.g. BT in our experiments)
that suffer from the lower level of optimization achieved
by the compiler.

Our current work is the porting of this feature to our
new line of compilers, Nanos Mercurium, supporting both
C and Fortran95, and achieve full interoperability between
both languages. We will also maintain the modifications to
gfortran across different versions of the compiler, while
possible, with the goal to continue being able to work in a
source-to-source way. In this line, adopting a syntax in
accordance with Co-Array Fortran for our intermediate
language seems the appropriate direction to follow to allow
Fortran applications to be conscious about threads.
We would also like to continue with the evaluation of the
proposal using other kinds of applications (e.g., integer,
multimedia applications) to have a better understanding



with respect the differences of keeping the data private or
making it threadprivate.
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