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Abstract

Building processors with large instruction windows has
been proposed as a mechanism for overcoming the memory
wall, but finding a feasible and implementable design has
been an elusive goal. Traditional processors are composed
of structures that do not scale to large instruction windows
because of timing and power constraints. However, the be-
havior of programs executed with large instruction windows
gives rise to a natural and simple alternative to scaling. We
characterize this phenomenon of execution locality and pro-
pose a microarchitecture to exploit it to achieve the benefit
of a large instruction window processor with low implemen-
tation cost. Execution locality is the tendency of instruc-
tions to exhibit high or low latency based on their depen-
dence on memory operations. In this paper we propose a
decoupled microarchitecture that executes low latency in-
structions on a Cache Processor and high latency instruc-
tions on a Memory Processor. We demonstrate that such
a design, using small structures and many in-order com-
ponents, can achieve the same performance as much more
aggressive proposals while minimizing design complexity.

1 Introduction

The most important impediment to improving single-
threaded processor performance is the memory wall [1].
Due to improvements in process technology and microar-
chitecture, modern microprocessors are clocked in the giga-
hertz range and can reach peak performances of several bil-
lion instructions per second. Unfortunately, improvements
in memory systems have not kept pace with improvements
in microprocessors. As these rates of improvement con-
tinue to diverge, we reach a point where some instructions
can execute in just a few cycles while others may take hun-
dreds or even thousands of cycles because they depend on

uncached data. Critical high-latency instructions caused by
cache misses can slow a processor well below its peak po-
tential.

We present an efficient and practical proposal to address
this problem. We observe that programs exhibit execution
locality. That is, instructions tend to exhibit regular be-
havior in terms of their ability to be classified as either
high or low latency depending on their dependence on un-
cached data. Just as caches were proposed to exploit data
locality, we propose a decoupled Cache/Memory microar-
chitecture to exploit execution locality. One pipeline, the
out-of-order Cache Processor (CP), handles low latency in-
structions and exploits as much traditional instruction-level
parallelism (ILP) as possible. A second pipeline, the in-
order Memory Processor (MP), handles high latency in-
structions and enables memory-level parallelism (MLP).
The two pipelines are connected by a simple queue that
gives the effect of a large instruction window without the
need for a large content-addressable memory (CAM). Our
decoupled approach fully exploits the parallelism available
in the instruction stream by maintaining an effective win-
dow of thousands of in-flight instructions with much less
complexity than competing proposals.

1.1 Our Contribution

Rather than address the limitations of each processor
structure, we exploit the behavior of programs with respect
to long memory latencies to produce a holistic approach to
building a large instruction window processor.

This analysis allows establishing an important relation-
ship between the memory hierarchy and the number of cy-
cles instructions must wait for issue. This relationship gives
rise to the new concept of execution locality, enabling us
to build a new decoupled architecture that has many design
advantages over a centralized architecture.
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Config L1 L1 L2 L2 memory
access size access size access
time time time

L1-2 2 ∞ - - -
L2-11 2 32KB 11 ∞ -
L2-21 2 32KB 21 ∞ -
MEM-100 2 32KB 11 512KB 100
MEM-400 2 32KB 11 512KB 400
MEM-1000 2 32KB 11 512KB 1000

Table 1. Configurations for quantifying the ef-
fect of memory wall
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Figure 1. Effects of memory subsystem on
SpecINT

2 Execution limits and Execution Locality

The memory wall itself is not necessarily a limitation to
the ability to exploit instruction-level parallelism. Proces-
sor characteristics and program characteristics play an im-
portant role in the effect of the memory wall on execution.

We quantify this effect by observing the impact of sev-
eral memory subsystems on a range of out-of-order cores.
Out-of-order execution is necessary to evaluate the ability
of these cores to hide latencies of independent instructions,
usually loads. The resources of all out-of-order cores eval-
uated are sized such that stalls can only occur due to short-
age of entries in the ROB. Thus, providing the number of
ROB entries is enough to describe these 4-way speculative
processors. Using SPEC2000 as the workload, six different
memory subsystems are evaluated for IPC. Table 1 details
their configurations. In this table, memory access times are
given in processor clock cycles.

Figures 1 and 2 show the effects on IPC of using these
six memory subsystems. In these figures Size of Instruction
Window is the same size as the Reorder Buffer.

An analysis of SpecFP benchmarks shows that even for
the slowest memory subsystems it is possible to recover the
lost IPC simply by scaling the processor to support thou-
sands of in-flight instructions. With an ROB of 4K entries
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almost all architectures perform similarly to the perfect L1
cache configuration. The reason behind this IPC recovery is
that load misses are not on the critical path on SpecFP when
enough instructions can be kept in–flight.

For SpecINT benchmarks the analysis is somewhat dif-
ferent. These workloads sometimes misbehave in two ways
that can put a high latency load on the critical path: pointer
chasing behavior and branch mispredictions depending on
uncached data. The latter will force a complete squash of
the instructions of the processor with a devastating effect on
performance. Note that branch mispredictions depending
on short latency events can be recovered from quickly and
thus have little impact on IPC. Figure 1 shows how in this
case recovering IPC by using large instruction windows is
not an effective solution. Thus, different techniques need
to be researched for these cases [2]. In any case, large-
instruction windows are not detrimental to integer codes.
They simply do not help as much as they do for floating
point workloads.

2.1 Exploiting Execution Locality

Clearly, one way to build an architecture capable of over-
coming the memory wall is to produce a chip with resources
to handle thousands of in-flight instructions. This is anal-
ogous to the design methodology used for current out-of-
order chips with respect to handling L1 cache miss laten-
cies. These latencies are quite small. An L2 hit normally
takes around 5-20 cycles. As new technologies have been
used to implement chips, the cache distance has slowly in-
creased. To hide this new latency, the resources on the
chip (instruction queue, register file, load/store queue and
reorder buffer) must be increased commensurately to main-
tain the previous IPC rates. This approach is feasible for
dealing with increasing L1 miss latencies. However, in-
creasing the structures more than 1000% to support thou-
sands of in-flight instructions is totally impractical due to
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power and timing issues. Thus, most research on large-
window processors has focused on replacing non-scalable
resources with new resources that scale much better using
a variety of techniques ranging from virtualization to hi-
erarchical implementations, etc. Unfortunately, the design
complexity of such approaches is still high.

To propose innovative designs with reduced complexity
we wanted to collect more information about the execution
of programs. To this end, the following instruction-centric
analysis was performed. Using an out-of-order architec-
ture with a memory latency of 400 cycles and an unlim-
ited processor we focused on SpecFP and analyzed the av-
erage number of cycles a correct–path instruction waits in
the instruction queue until it is issued. The results, shown
in Figure 3, indicate that there is considerable regularity in
the issue latency of instructions. This regularity is highly
correlated with the parameters of the memory subsystem.

Several groups/peaks can be seen in the figure. Most
instructions (about 70%) execute in fewer than 300 cycles
while about 11% of all instructions execute around 400 cy-
cles and about 4% execute around 800 cycles. This distri-
bution is highly correlated with the memory access type of
loads present in the instruction slices. The front-end nor-
mally advances at full speed, fetching 4 instructions per cy-
cle. Thus the whole instruction slice is fetched in a rela-
tively small number of cycles. We can conclude that the
70% of instructions that execute in fewer than 300 cycles
are instructions that depend on a cache hit or are instruc-
tions whose source registers will all be computed in a short
amount of time. The small peak around 400 cycles corre-
sponds to instructions that depend on a single cache miss.
The same applies to the small peak around 800 cycles which
is made of instructions that depend on a chain of 2 cache
misses. The provided numbers add up to 85%. The remain-
ing 15% belongs to instructions where it is not clear if they
depend on 1 or 2 misses, or are instructions that depend
on more than 2 misses. For SpecINT applications, almost
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all correct–path instructions are issued shortly after decode.
The reason is that long latency events are often on a mispre-
dicted path. After recovery, long latency loads have been
turned into prefetches and most of correct-path code ends
up having short issue latency.

This phenomenon can be given an interesting interpre-
tation in terms of register availability. Once an instruction
enters the instruction window, its source registers can be in
1 of 4 states: 1) READY, ie, with computed value; 2) NOT
READY, depending on cache events; 3) NOT READY, wait-
ing for other instructions to writeback; and 4) NOT READY,
depending on long-latency memory events. In terms of ex-
ecution, cases 2 and 3 have a very similar behavior. We are
now ready to establish a new classification of instructions:
Those instructions that have at least one long–latency reg-
ister (ie, in state 4) are classified as having low execution
locality. The remaining instructions, which will be issued
quickly, have high execution locality. Execution locality is
a property that describes instructions as a function of the
number of cycles they wait in the queues until they issue.
This distance is called the Issue Latency. In general, in-
structions depending on cache misses will have low execu-
tion locality while instructions that depend only on cache
hits will have high execution locality. This concept is ex-
emplified in Figure 4 where it is shown that different execu-
tion groups are clearly disjoint. This figure also represents
one of they key properties of programs which is Karkha-
nis’ observation that many independent instructions can be
executed under the shadow of a load miss [3]. Large win-
dow processors, such as KILO-Instruction processors [2],
profit from this characteristic to hide the latencies of long-
latency misses. Figure 4 also shows the detrimental effects
of mispredictions depending on cache misses. Therefore, to
establish a relationship between execution locality and per-
formance it is necessary to take into account the criticality
of loads. In general, loads get very critical when they drive a
low-confidence branch. These cache accesses will strongly
determine performance [4].



3 A Decoupled KILO-Instruction Processor

It is interesting to take a second look at Figure 4. As
the processor advances execution, the gap between the
youngest and the oldest instruction tends to increase. Some
events, like mispredictions or stores that end long-latency
slices, will reduce this gap. Two features provide the most
benefit to an architecture with an unlimited window:

1. The Fetch Unit never stalls. Thus, high locality code
continues to execute in the presence of several high
latency loads and loads that miss can be executed early.

2. Low locality instructions can be executed in parallel
with recently fetched high locality instructions.

Execution of low locality code deserves one more look.
As Karkhanis et al. point out [3], most instructions that are
fetched under the shadow of a miss are independent of it.
Thus, The amount of low locality code is small when com-
pared to high locality code. Most of the execution band-
width is consumed by high locality code. Nevertheless,
current architectures have to stall every time they encounter
a memory access. Thus, the small amount of low locality
code present in the instruction stream causes stalls that sig-
nificantly reduce performance.

The following guidelines can be derived from the analy-
sis of execution locality:

• Never Stall in Fetch: It is important to continue fetch-
ing instructions and executing them because a large
part of the execution bandwidth will be used for short
issue latency instructions. Also, this permits executing
load operations as soon as possible. This is the same
motivation behind Continual Flow Pipelines [5].

• Large Storage is Important but a Large CAM is Not:
We will need to store many non-executable instruc-
tions during a cache miss. However, there will be
plenty of time to execute them and they do not require
high execution bandwidth. Therefore it is not neces-
sary to have all of these instructions in an issuable
queue based on CAM logic. This concept has been
exploited before in the Waiting Instruction Buffer [6].

• Distributed Execution: Low execution locality code
is very decoupled from high execution locality code.
There is no need to communicate back values as low
locality code feeds only low locality code.

3.1 A Decoupled KILO-Instruction Processor

Using these insights we will now introduce the main
contribution of this paper: the Decoupled KILO-Instruction
Processor (D-KIP). The D-KIP is the result of exercising
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Figure 5. 2-Level Decoupled Processor

the simplest implementation of the presented guidelines;
we have 1) two different execution points, 2) unidirectional
communication from high locality to low locality code and
3) high latency tolerance in the low locality code. The di-
rect implementation of these ideas is to use one processor
for each locality type linked by an unidirectional instruction
buffer. This structure, shown in Figure 5, complies with all
design guidelines.

We will now describe the details of this microarchitec-
ture before analyzing its performance and complexity char-
acteristics.

3.2 Implementation of a D-KIP processor

The two-level D-KIP processor is based mostly on struc-
tures for which implementations already exist, allowing it
to be built reusing standard modules and focusing on the
interfaces. Thus most of the work consists in adapting the
structures to comply with the interfaces. In Section 5, we
analyze D-KIP from a design perspective.

Figure 5 shows that the microarchitecture consists of two
processors, a simple, non-issue-capable instruction buffer
and an address processor that handles all memory opera-
tions. The small and fast Cache Processor can be efficiently
implemented using the MIPS R10000 as starting point [7].
It is useful to use a register-mapped architecture because it
is important to provide fast branch recovery in the front-
end. Because this processor assumes a perfect L2 Cache
it can be smaller than current generation processors. The
Memory Processor can be even simpler since it does not
require much execution bandwidth. Thus in this study we
have modeled it using a simple Future File architecture [8].

We target the following execution model: Instructions
are fetched by the Cache Processor (CP). They stay there,
waiting to be executed until they are issued to the functional
units or they are determined to have long issue latency, i.e.,
they belong to a low execution locality slice. In this case
they are moved from the CP into a Low Locality Instruction
Buffer (LLIB) and wait until all long-latency events they
depend on have finished. There is one LLIB for floating



point and another LLIB for integer instructions.
When the long-latency load completes it simply keeps

the value in the address processor. When the depending
instructions arrive at the head of the LLIB and the load value
is available, both the instructions and the value are inserted
into the corresponding Memory Processor (MP). Execution
can now proceed in the MP.

The LLIB Queues do not provide global issue capabili-
ties. In addition, they use a FIFO policy which greatly sim-
plifies the register management.

We will now discuss some of the modifications necessary
to implement the decoupled processor.

Aging-ROB. The Cache Processor contains a ROB like
other processors but in addition to allowing recovery from
mispredictions and exceptions, the CP’s ROB is also used
to determine if instructions belong to a low execution local-
ity group or not. For this task the ROB cannot wait until
writeback because this is too late.

The D-KIP proposes using a scheme known as the
Aging-ROB, which improves and supersedes the pseudo-
ROB scheme introduced in [9]. The Aging-ROB is a ROB
structure in which instructions progress at a constant pace.
This allows checking whether instructions are short latency
or not using a timer. In general the size of the ROB will be
the number of aging cycles multiplied by the commit width,
which in our study is 4. The Aging-ROB is implemented
as a circular FIFO with a head and a tail pointer that
is moved forward at the same speed as decode but with a
constant delay.

LLIB Insertion and Wake-up. The Aging-ROB will
force analysis of an instruction after a certain number of cy-
cles. This operation is called Analyze in our pipeline and it
determines if the instruction is long–latency. There are two
instruction types that behave differently. Loads are special
and they are analyzed first here. When a load arrives at An-
alyze it must be determined if it has missed; thus, the ROB
timer should be large enough that it can detect a miss. To
detect whether a load has missed in the L2 cache it is nec-
essary to wait until the tag array has been accessed and the
hit/miss information returns. This imposes a minimal size
on the ROB timer. If the load missed, then this information
is recorded in a bit vector that identifies long–latency reg-
isters (the Low Locality Bit Vector, LLBV). Otherwise the
register is marked as short latency. In any case, the analy-
sis of instructions does not stall unless the current situation
of the load is still unknown. When a generic (non-load) in-
struction arrives at Analyze it is first checked whether it has
already executed (this information is stored in the ROB). In
that case the destination register is marked as short latency.
Otherwise the sources are analyzed. If one of the sources is

long-latency then the instruction is also classified as long-
latency and is therefore inserted in the LLIB. If none of the
two situations applies, then the instruction is still in-flight,
but will be executed soon. In this case the architecture stalls
in the Analyze stage until the instruction writeback. The rea-
son to stall and not continue at this point is due to the way
checkpoints work, which we explain shortly. The impact of
these stalls is minimal, averaging 0.7% IPC loss.

As instructions source long-latency registers, new regis-
ters are marked as long-latency in the LLBV. It is theoret-
ically possible that, after a while, all registers are marked
as long–latency, an undesirable situation that would not im-
prove performance as all instructions would be processed
by the potentially slower memory processor. However, it
has been measured that this does not happen during steady
state. There are various reasons for this:

• Checkpoint recovery restores the full state to the cache
processor. This operations clears the LLBV com-
pletely.

• Short–latency operations, which represent more than
65% of all executed code (see section 2.1), will rede-
fine registers that were marked as long–latency. After
completion, the corresponding bit in the LLBV will be
cleared.

Long-latency loads are executed in the address proces-
sor, where the LSQ is located. Upon completion, the load
value is stored in a FIFO buffer, one per LLIB. Each en-
try in this FIFO is associated to a long latency load. When
the first depending instruction is about to enter the Memory
Processor, and the load value is available, the value is first
inserted from this buffer into the Future File of the Mem-
ory Processor from where the operation will then obtain the
value.

Registers. Register management is a critical issue. We
want to keep a minimum number of registers while having a
simple and implementable management algorithm. The D-
KIP architecture provides a solution for both goals using a
distributed organization of registers allowing for distributed
and independent register management.

The Cache Processor does not need any modification.
The traditional algorithm of freeing registers once the re-
naming instruction is analyzed can be used here. The Mem-
ory Processor uses a Future File architecture. It requires a
logical register file in the front-end plus the associated space
in the reservation stations. The low requirements of the MP
enable it to have a very small number of reservation sta-
tions, so register management is very efficient in this part of
the architecture.

The only structure that requires more attention is the
LLIB since it may need to store many registers. How-
ever, the LLIB has some helpful properties. First, this
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structure is in-order, so the order in which registers are in-
serted/extracted is known before-hand. The LLIB register
storage (called LLRF, Low Locality Register File) works as
follows. During Analyze it is determined if a long-latency
instruction has READY operands. These operands are then
inserted into the LLRF. In the Alpha ISA, which we are us-
ing, there will never be more than one READY operand per
instruction. Thus we need to preallocate at most one reg-
ister per instruction. The commit width of the processor
we are modeling is 4. This will require an insertion rate of
4 registers per cycle in the worst case. The same applies to
the instruction extraction rate. However, the serial FIFO na-
ture of the LLIB allows storing each register in a different
bank. We model our LLRF as a banked register file with
8 banks. LLIB Insertion and LLIB Extraction always op-
erates on a disjoint group of 4 banks. If a value to be read
happens to be in a bank that is being written, the reading
instruction is simply stalled for one cycle. This avoids con-
flicts in their access and allows to implement these banks as
single-ported structures. The result is that each bank occu-
pies minimal area and has minimal size. We calculated that
the data array would be 6.6 times smaller than a central-
ized register file with 4 read ports and 4 write ports and the
same number of entries [10]. Each bank has a free list that
works independently of the other banks. The instruction in
the LLIB records the position of the READY operand dur-
ing insertion. Actually, not all instructions have a READY
register. There are many integer instructions that have a sin-
gle operand and there are instructions with two long-latency
sources. These will not require an additional operand. We
will analyze how to exploit this property to further reduce
the size of the LLRF. A schematic showing the LLRF and
the associated machinery is shown in Figure 6.

Checkpoints. The processor can recover mispredictions
in the Cache Processor using the ROB structure there or
a rename stack. In the memory processor, these events,
although less likely, also occur. Recovery in the MP is
supported by using selective checkpointing [11]. Full state
checkpoints are taken at specific points during the analyze
stage in the CP. At this point the instruction sees a register
file composed of READY registers and some long-latency
registers. Taking a checkpoint involves copying the ready
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values from the architectural register file (ARF) at Analyze
into a free entry of the Checkpointing stack. In addition, all
operations that generate a long-latency register must be in-
formed that they should writeback their destination values
into this entry of the stack. This implementation is aided by
keeping a small RAM parallel to the long-latency bit vector
(LLBV). For each active bit in this vector, the RAM con-
tains the position in the LLIB of the instruction that gen-
erates the value or a pointer to a previous checkpoint from
which to copy the value. Having at least one checkpoint in-
flight in the LLIB before wakeup assures that no inconsis-
tencies occur. This scheme is shown in Figure 7 where the
small RAM structure is referred to as the Architectural Writ-
ers Log (AWL). The number of ports of the Checkpointing
Stack is not a problem as this structure is not frequently ac-
cessed.

In the LLIB paragraph it was mentioned that Analyze
needs to wait for short latency instructions that have not
written back their values. This simplifies checkpoint man-
agement as it makes sure that all short latency values have
written into the ARF when a checkpoint is taken.

3.3 Load/Store Queues

We do not directly address a very important component
of the microarchitecture: the load/store queues. A large
window processor requires a scalable structure capable of
supporting hundreds of in–flight loads and stores. In the
D-KIP, the LSQ is decoupled from the remaining structures
of the processor and it requires only small modifications to
comply with the new interfaces. The reader can assume that
D-KIP integrates the hierarchical queue designs presented
in [12] or one of the several scalable LSQ designs that have
been recently proposed [13] [14].

The LSQ is decoupled from the D-KIP in the same sense
as a Decoupled Access-Execute Architecture [15]. In the
D-KIP, the Address Processor needs to interface the Cache
Processor and the Memory Processor. Load and Store ports
can be asymmetrically partitioned – with more capacity for
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the CP – to support both cores. As was already mentioned,
the address processor also needs to keep a FIFO buffer, one
per LLIB, to store the results of long latency loads.

3.4 Pipeline

To conclude this section we show the full pipeline of the
architecture in Figure 8. The three pipelines (Cache Proces-
sor, LLIB, Memory Processor) are chained. Most instruc-
tions only traverse the CP pipeline. Instructions will enter
the LLIB when the Analyze stage determines that they be-
long to a low locality slice. Finally, insertion into the Mem-
ory Processor happens when the oldest instruction in the
LLIB depends on a long-latency load that has completed.
For other instructions insertion is performed without addi-
tional checks.

4 Performance Evaluation

The evaluation of the D-KIP is oriented toward verifying
the introduced concept of execution locality and analyzing
the efficiency of the architecture itself.

4.1 Simulation Infrastructure

Our simulation infrastructure is designed to execute Al-
pha binaries and traces. We rely on Simplescalar-3.0 [16]
for the loading and execution of these programs. The sim-
plescalar cycle accurate simulator is replaced by a KILO-
Instruction Processor simulator capable of simulating a de-
coupled KILO-Instruction processor. The workbench con-
sists of all benchmarks of the SPEC2000 benchmarking
suite. We simulate 200 million committed instructions se-
lected using the SimPoint methodology [17].

We will be evaluating several sizes for structures in the
architecture. Table 2 summarizes architectural parameters

Cache Processor
Architecture Merged Register File [7]

Fetch/Decode/Analyze Width 4
Branch Predictor Perceptron [18]

ROB Timer 16 cycles
ROB Capacity 64 entries

ALU Units 4
Integer Multipliers 1

FP Adders 4
FP Multipliers/Divisors 1

LLIB
Architecture FIFO Queue

Number of Entries 2048 each
Insertion/Extraction Rate 4

Register Storage 8 banks, 256 regs each (max)
Integer Memory Processor

Architecture Future File [8]
Decode Width 4

ALU Units 4
Integer Multipliers 1

FP Memory Processor
Architecture Future File [8]

Decode Width 4
FP Adders 4

FP Multipliers/Divisors 1
Address Processor

Architecture Hierarchical [12]
Load/Store Queue Size 512 entries

Number of Memory Ports 2 R/W ports (global)
L1 Cache Size 32 KB

L1 Cache Hit Latency 2 (1+1) cycles
L2 Cache Hit Latency 11 (1+10) cycles

Memory Access Latency 400 cycles

Table 2. Parameters of the architecture

that are invariant throughout this evaluation. Table 3 sum-
marizes parameters that are going to be analyzed throughout
the paper. The provided values are the defaults and are used
when not specified otherwise.

L2 Cache Size 512 KB
CP Integer Queue Size 40

CP FP Queue Size 40
CP Scheduler Out-of-Order

MP Integer Queue Size 20
MP FP Queue Size 20

MP Scheduler In-Order

Table 3. Default values for variable parame-
ters
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4.2 Performance Comparison

First of all we want to test the performance of our ar-
chitecture against other existing and experimental architec-
tures. For this test we will use all the default values shown
in Table 3. All LSQs are identical and have 512 entries. We
will compare against three architectures:
R10-64 An Out-of-Order processor that models a MIPS
R10000 processor. It has a ROB size of 64 entries and 40-
entry issue queues. It is thus identical to the default Cache
Processor.
R10-256 Another R10000-style processor, but with futur-
istic ROB and Queue sizes. The ROB here has 256 entries
and the queues have 160 entries.
KILO-1024 This is an implementation of [9]. The
pseudo–ROB has 64 entries and the Slow Lane Instruction
Queue is Out-of-Order with 1024 entries. The issue queues
have 72 entries.
D-KIP-2048 This is the implementation described here.
It features two LLIBs (integer + FP) of 2048 entries each.
Note that these queues are FIFOs, which allows them to be
larger than the SLIQ. However, as will be shown, this has
no impact on performance.

Figure 9 shows the IPC that these configurations yield.
The figure shows dramatic speed-ups achievable from the
two large window processors. The floating point bench-
marks in particular achieve a considerable performance
benefit. The reason is simple: Branch prediction in these
architectures is highly accurate. Thus, long latency instruc-
tions are almost never discarded and are simply processed
later after being reinserted from the long latency buffering
system. Note that for integer benchmarks the performance
of the D-KIP is less than that of the traditional KILO proces-
sor. The reason is that integer codes feature a lot of chasing
pointers which will profit from an out-of-order instruction
buffer such as the SLIQ [9]. Therefore it achieves better
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performance. It does so, however, at the cost of high com-
plexity and requires a very complex mechanism for register
storage [19]. The performance advantage of the D-KIP in
SpecFP compared to the KILO stems from the fact that the
D-KIPs simple implementation supports trivially to imple-
ment two LLIBs and two memory processors which allows
it to exploit more parallelism and adds a minimal out-of-
order capability to the LLIBs which now can progress out-
of-order, but only with respect to each other.

Looking at Figure 2 we see that the D-KIP-2048 achieves
a SpecFP performance similar to that of the R10-768, with
the difference that the D-KIP-2048 processor has no out-of-
order structure larger than 40 entries.

We will analyze now which parameters are most impor-
tant in these speed–ups.

4.3 Impact of Scheduler Policies and Queue Sizes

In this section we will evaluate the impact of the instruc-
tion queue sizes and impose a more severe restriction by
forcing the queues to be in-order.

We find that, for integer benchmarks, the D-KIP configu-
ration is only sensitive to the scheduling policy in the Cache
Processor. Being out-of-order instead of in-order in this part
of the pipeline increases the IPC by 29%. The D-KIP is
insensitive to the configuration of the MP. This is reason-
able as the MP processes only about 5% of all instructions
during integer codes. The speed-ups are a sign that integer
benchmarks profit from the D-KIP prefetching capabilities,
but not from the additional processing capacity.

An analysis of SpecFP benchmarks shows that there is
more potential here. Figure 10 shows the impact of the pro-
cessor configurations on the execution speed for SpecFP. In
this figure, INO means ”In-Order”, while OOO-XX means
”Out-of-Order” and XX refers to the size of the queue.

First, the difference of in-order execution versus out-of-
order execution in the Cache Processor again produces a



speedup of 32%. However, in this case there are still per-
formance increases as we go to larger processors. With an
in-order MP, there is a 13% speed–up when going from an
OOO CP with 20 entries to an OOO CP with 80 entries.
In addition, as we go to larger CP processors, the config-
uration of the MP also has more impact. Going from an
in-order MP to an out-of-order MP with 40 entries in the
queues gives a speed-up of 1% when the Cache Processor is
in-order. The same variation produces a speed-up of 6.3%
when the Cache Processor is out-of-order with 80 queue en-
tries. Figure 10 also shows that the OOO MP with 20 en-
tries achieves almost the same IPC as the OOO MP with 40
entries. Thus, while OOO in the MP can be useful for ag-
gressive configurations, the number of entries required can
be very small in general. The most aggressive configuration
achieves an IPC of 2.54, up from the 2.37 achieved by our
baseline D-KIP in Figure 9.

4.4 Impact of Cache Sizes

Our next analysis focuses on the memory subsystem. We
want to see how the D-KIP behaves under a subset of differ-
ent sized caches. Smaller caches result in higher miss rates
which in the context of the D-KIP means that more instruc-
tions are going to be executed in the memory processor. If
more instructions are executed in the MP, the scheduling
policy there could be of higher importance.

Based on the previous section we select a subset of
configurations: Config–CacheProc/Config–MemProc. The
configurations are: INO/INO (as the worst behaving),
OOO-20/INO, OOO-80/INO and OOO-80/OOO-40. We
will modify the size of the L2 Cache from 64KB to 4MB,
maintaining all other parameters, and analyze the behavior
of the architecture under different cache sizes. We also add
the R10-256 processor to show the differences with tradi-
tional OOO–based processors. The average IPC is shown
in Figure 11 and Figure 12 for SpecINT and SpecFP.

The behavior of the D-KIP under cache variations in in-
teger benchmarks is quite common. Each duplication of
size in the L2 cache produces more or less a linear speed-up
in the IPC. This is very similar to the single-core out-of-
order processor. The interesting properties of the D-KIP
do show itself in the SpecFP figure. IPC variations are
much smaller here. The capacity of the D-KIP to process
correct-path long-latency instructions without stalls allows
it to be more cache insensitive. The difference between us-
ing a 64KB cache and a 2MB cache is less than 15%. It is
only when a 4MB Cache is added that a considerable speed-
up can be perceived. In any case, the maximum speed–up is
still only about 24% (INO–INO configuration).

From the figure it seems that the scheduling policy in the
memory processor does not have that much influence on
the IPC variations. Thus we expect that even for the small-
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est cache of 64KB there is still enough execution locality so
that the cache processor still processes most of the instruc-
tion stream. Our simulations confirm this hypothesis. Even
for the 64KB cache, the OOO-80/OOO-40 CP still pro-
cesses 67% of all committed instructions in the cache pro-
cessor (for SpecFP). When a 4MB cache is in use, the total
number of high locality instructions increases to 77%. This
difference is not so large considering that the cache size
differs by about two orders of magnitude. It also explains
why the D-KIP configuration is so tolerant to variations of
the cache size. Compare this with the single-core R10-256
configuration. For the range of caches observed the R10-
256 configuration sees a total speed-up of 1.55 while the
most aggressive D-KIP configuration sees only a speed–up
of 1.18. This shows the tolerance of the decoupled archi-
tecture to different cache sizes when executing numerical
codes.

4.5 Storage Requirements

The LLIB requires an associated register buffer that can
be very large. However, not all instructions in the LLIB
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have an associated READY register. They can be single-
source instructions or both sources may be long latency.
If a large number of instructions do not require additional
storage it may be possible to reduce the size of the register
storage by not allocating a register.

Figures 13 and 14 show the maximum number of simul-
taneous instructions and registers in the LLIB during execu-
tion in our D-KIP architecture. Each LLIB can accommo-
date up to 2048 instructions and an equal number of regis-
ters.

The figures show that the real number of necessary reg-
isters can be much smaller. The worst case corresponds to
integer registers/instructions during SpecINT benchmarks.
Many of these benchmarks contain large and irregular load
chains. This results in LLIB stalls due to fill-ups for four
integer benchmarks. On the other side, none of the SpecFP
benchmarks required to fill the LLIB. Note that in Figure 13
we are considering the integer LLIB while in Figure 14 only
the floating point LLIB is being considered.

These results suggest that the LLIB can probably be
reduced considerably without significantly degrading IPC.

For the code regions executed, an LLRF with only 1000 en-
tries would have been enough. This number is large, how-
ever there is only a single benchmark that required more
than 750 registers. The average number is much smaller,
fewer than 500 registers. In any case, it must not be forgot-
ten that the LLRF is a very regular structure with 8 single–
ported banks. This makes it clear that a structure such as
the LLRF would not be a bottleneck, for neither area nor
energy reasons.

5 Design Issues

The D-KIP processor is an attempt to provide the bene-
fits of KILO–Instruction Processing at moderate cost. This
section will focus on design issues and comment on the
complexity of the approach.

The main technique that we have focused on using to
reduce the complexity is decoupling [15]. While decou-
pling does not reduce the amount of hardware that has to
be designed, it does limit the interaction between the two
modules. The idea is to maintain only very narrow inter-
faces. Exploiting this property allows designer groups to
work almost in isolation, with only little efforts to verify
cross-module interaction correctness.

The following interfaces must be considered between the
four structures:
CP→LLIB During the Analyze stage instructions may be
sent to the LLIB as if it were a functional unit. The LLIB
must synchronize with the CP and provide entries for the
instruction and possibly an associated register. Moreover,
when a checkpoint is taken there needs to be a path into the
LLIB to inform instructions that create checkpointed regis-
ters that they have to writeback into the checkpoint stack.
LLIB→MP When an instruction slice is ready it must be
sent to the MP. This is simple considering that the LLIB is
a FIFO. In addition, some registers may need to be fetched
from the LLRF.
LSQ→MP When long latency loads complete their val-
ues are temporarily stored in a FIFO buffer. When the de-
pending instruction arrives at the head of the LLIB it checks
if the value is available. In that case, the value needs to be
written into the Future File of the MP.
CHPT→CP When the architecture returns to a check-
point the CP’s register file has to be recovered and the
LLBV cleared.
CP→CHPT Checkpointed registers must be copied from
the ARF in the CP to the Checkpoint Stack when a Check-
point is taken.
MP→CHPT Checkpointed instructions must write their
results into the Checkpointing Stack. Note that
MP→CHPT→CP is the only way back–communication can
happen in the D-KIP.



6 Related Work

Recently, there has been much research conducted to de-
sign microarchitectures able to overcome the memory wall
by introducing techniques for the ROB, register files, in-
struction queues and load/store queues. The basic differ-
ence between these techniques and the proposal introduced
here is that the D-KIP approaches the memory wall prob-
lem from the point of view of the execution locality con-
cept, while previous efforts have concentrated on individu-
ally overcoming the scalability problem of complex proces-
sor structures.

Several modern techniques try to improve the accuracy
of prefetching by actually pre–executing the program but
without committing the results. Assisted threads [20] [21]
[22] rely on pre–executing future parts of the program, se-
lected at compile time or generated dynamically at run time.
Runahead Execution [23] [24] pre–executes future instruc-
tions while an L2 cache miss is blocking the ROB.

Processor behavior in the event of L2 Cache misses has
been studied in detail in [3]. Karkhanis et al. showed that
many independent instructions can be fetched and executed
in the shadow of a cache miss. This observation has fueled
the development of microarchitectures to support thousands
of in–flight instructions.

Many suggestions have been proposed for overcoming
the ROB size and management problem. Cristal et al. pro-
pose virtualizing the ROB by using a small sequential ROB
combined with multicheckpointing [25] [9] [26]. Akkary
et al. have also introduced a checkpointing approach [12]
which consists in taking checkpoints on low–confidence
branches. Cherry [27] uses a single checkpoint outside the
ROB to divide the ROB into two regions: a speculative re-
gion and a non–speculative region. Cherry is then able to
early release physical registers and LSQ entries for instruc-
tions in the non–speculative ROB section.

Instruction queues have also received attention. The
Waiting Instruction Buffer (WIB) [6] is a structure that
holds all the instructions dependent on a cache miss until it
is resolved. The Slow Lane Instruction Queue (SLIQ) [9] is
similar in concept to the WIB but is designed as an integral
component of an overall KILO–instruction microarchitec-
ture. Recently, Akkary et al. have proposed the Continual
Flow Pipelines (CFP) architecture [5] in which they pro-
pose the efficient implementation of a two–level instruction
queue. It contains a Slice Data Buffer (SDB) which is simi-
lar in concept with the SLIQ. As with the SLIQ, the SDB is
tightly integrated in a complete microarchitecture designed
to overcome the memory wall.

Register Management has also been studied extensively.
Several techniques have been developed in the context of
out-of-order processors with centralized register storage.
Virtual Registers [28] is a technique to delay the allocation

of physical registers until the issue stage. On the other hand,
Early Release [29] tries to release register earlier by keeping
track of the number of consumers. An aggressive technique
consists in combining both approaches. This technique is
known as Ephemeral Registers [19]. The CFP architecture
[5] stores long-lived registers along with the instructions in
the Slice Data Buffer. Thus, each entry in the SDB is in-
creased with the space to hold a register value. If the in-
struction has no READY registers, then the space is wasted.
The D-KIP stores long-lived registers through an additional
level of indirection and is thus able to save register storage.

7 Conclusions

Our main conclusion is that traditional out–of–order
(OOO) execution is not a cost–effective way to handle code
that depends on long–latency events. We showed that this
technique is effective only to handle code dependent on
cache hits, where it provides around 30% IPC improvement
(see Figure 10).

Studying program behavior, we observed that over 70%
of all instructions are executed a short time after they are
fetched. Making an analogy with memory subsystems we
described program execution using the concept of execu-
tion locality. Instructions depending on short latency events
are said to have high execution locality while instructions
which depend on off-chip memory accesses are said to have
low execution locality.

Exploiting this idea we propose building a decoupled
KILO–Instruction processor at moderate cost. We showed
that high locality instructions are best processed by an out–
of–order Cache Processor while low locality instructions
can be efficiently processed by a simple in–order Mem-
ory Processor. Our basic implementation of the architec-
ture featuring out–of–order queues in the Cache Processor
with 40 entries and an in–order Memory Processor obtains
a speed–up for SpecFP of 40% compared to a futuristic
out–of-order processor with 256 entries in the issue queues
and an 88% speed–up when compared to a smaller, Cache
Processor–like, out–of–order processor. For SpecINT the
gains are limited by the irregular branch behavior and by the
presence of load chains. In future work we plan to address
the impact of these load chains as well as to investigate a
decentralized load/store queue organization.

The nature of the decoupled design offers the promise
for reduced design complexity. Both the Cache Processor
and the Memory Processor are based on well known designs
such as the R10000 [7] or the Future File [8]. In addition the
Low Locality Instruction Buffer uses a FIFO architecture
with a simple register management algorithm.
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