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Abstract — The issue queue keeps the instructions that are
waiting for the availability of input operands and issue slots.
While some instructions remain for a few cycles in the issue
queue, the instructions dependent on L2 misses may remain
there for hundreds of cycles due to the L2 miss latency. Some
authors have proposed mechanisms to extract these instruc-
tions from the issue queue. However, these mechanisms
increase the issue-queue activity because the extracted
instructions must be replayed, that is, issued twice (at least).
Firstly, to be extracted from the issue queue. Secondly, after
resolving the L2 miss, to be executed.
We propose delaying the insertion of some instructions in the
issue queue. After predicting which load instructions are
going to miss in L2, the instructions dependent on these load
instructions will be stored in an instruction buffer instead of
being inserted in the issue queue. After resolving the miss,
the instruction buffer will be traversed in order to insert in
the issue queue the instructions dependent on the resolved
memory access. The advantages of this proposal with respect
to proposals that extract from the issue queue the instruc-
tions dependent on L2 misses are twofold. First, it avoids fill-
ing the issue queue with instructions dependent on L2 misses.
Second, it reduces the amount of instruction replays.
The evaluations show that delaying the insertion of instruc-
tions in the issue queue reduces the amount of instruction
replays between 27% and 31% in integer benchmarks and
between 33% and 39% in floating-point benchmarks with
respect to processors that extract from the issue queue the
instructions dependent on L2 misses. The evaluations also
show that this replay reduction does not harm processor per-
formance.

Index Terms — Instruction issue, L2 hit/miss prediction,
Instruction replays.

I. INTRODUCTION

In out-of-order processors, the issue queue is responsi-
ble for exposing the instruction level parallelism available
in programs. A conventional issue queue keeps a subset of
the in-flight instructions: the ones that have been renamed
and that are waiting for the availability of either the input
operands or the functional unit.

Instructions are inserted in the issue queue just after
being renamed, and are extracted after being issued to the
functional unit. Some instructions are extracted from the

issue queue just after being issued. However, other issued
instructions remain in the issue queue until the predicted
latencies for their producer instructions have been checked
because the issue queue is the recovery stage for latency
mispredictions [6].

While some instructions remain in the issue queue for a
few cycles, others remain there for a large time-span. Con-
sidering that the latency of L2 misses is about hundreds of
cycles, instructions dependent on L2 misses may remain in
the issue queue for hundreds of cycles. This large time-
span produces a reduction in the effective capacity of the
issue queue because the entries assigned to the dependent
instructions will not be used to expose parallelism until the
L2 miss gets resolved. Moreover, if the dependent instruc-
tions fill the issue queue, no parallelism will be exposed
until the L2 miss gets resolved; consequently, the proces-
sor will be unable to issue instructions to the functional
units.

To avoid filling the issue queue with instructions depen-
dent on L2 misses, several authors propose extracting the
dependent instructions from the issue queue and re-insert-
ing (replaying) them again when the L2 miss has been
resolved [8][12][17]. After extracting a dependent instruc-
tion, the freed issue-queue entry may be assigned to a
younger instruction that, if independent, will be issued;
otherwise, it will be also extracted to allow inserting a
younger instruction, and so on. Although these mecha-
nisms are able to increase processor performance, they
also increase the issue-queue activity because the
extracted instructions must be replayed; consequently, the
issue-queue energy consumption increases. We will refer
to these mechanisms asearly extracting mechanisms.

We propose a mechanism that tries to delay the insertion
in the issue queue of instructions dependent on L2 misses,
that is, alate inserting mechanism. Early in the pipeline,
we predict whether a load instruction will miss L2 or not.
This information will be propagated to the dependent
instructions in the Register Renaming stage. Only instruc-
tions predicted to be independent on L2 misses will be
inserted in the issue queue; the remaining instructions
(dependent on load instructions predicted to miss in L2)
will be recorded in an Instruction Buffer located before the
issue queue. When the L2 miss gets resolved, the Instruc-
tion Buffer is scanned at the same width as issue width in
order to insert in the issue queue the dependent instruc-
tions. The goals of the proposed mechanism are: a) reduc-
ing the amount of instruction replays, b) do not harm
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processor performance.
The evaluations compare a baseline processor with anearly

extracting mechanism versus the same processor extended
with the late inserting mechanism. Thelate inserting mecha-
nism reduces the number of instruction replays between 27%
and 31% in integer benchmarks and between 33% and 39% in
floating-point benchmarks with respect to the baseline pro-
cessor. Our evaluations also show that thelate inserting
mechanism does not harm processor performance.

The remainder of this paper is organized as follows.
Section II describes the baseline processor and how we
extend it with the late inserting mechanism. Section III
details the L2 hit-miss predictor we have developed.
Section IV presents an evaluation of our proposal. Section V
describes related works. Finally, Section VI summarizes the
conclusions of this work.

II. PROCESSOR DESCRIPTION

In this section we describe the processors used in this
work: the baseline processor and our proposed extension. The
baseline processor uses anearly extracting mechanism, that
is, a mechanism that extracts from the issue queue the instruc-
tions dependent on L2 misses. Our proposed extension, the
late inserting mechanism, allows delaying the insertion of
some instructions in the issue queue.

A. Baseline processor

Fig. 1 shows a block diagram of the baseline processor.
The core scheduler of the baseline processor uses an issue
queue and a Recovery Buffer [10]. Instructions are extracted
from the issue queue after being issued and are inserted in the
Recovery Buffer in issue-order timing. The instructions
remain in the Recovery Buffer until knowing if they are
dependent on a load instruction that misses in L1. On a L1 hit,
the instructions are discarded but, on a L1 miss they remain in
the Recovery Buffer until knowing if the load hits L2. If the
load hits L2, instructions dependent on the load are re-issued
(replayed) from the Recovery Buffer when the cache-block is
allocated in L1. To schedule the instructions, the Recovery
Buffer uses the issue-order timing that has been recorded;
while the Recovery Buffer is re-issuing instructions, no
instructions are issued from the issue queue.

On a L2 miss, the load and its dependent instructions are
discarded from the Recovery Buffer. Moreover, a bit vector
with as many entries as physical registers is updated; the bit
vector indicates which physical registers depend on L2
misses.

To re-issue (replay) these instructions when the cache
block is allocated in L1, we use a buffer named Instruction
Buffer (IB). The IB keeps all in-flight renamed instructions.
Instructions can be inserted from IB to the issue queue. While
instructions are inserted from the IB, no instructions are
inserted in the issue queue from the Rename stage. We use an

IB with as many entries as Reorder-Buffer entries. However,
several implementations that optimize the size of this buffer
have been published in the literature [2][17].

Fig. 1. Block diagram of the baseline processor

A module namedscanner is responsible for inserting the
instructions from the IB to the issue queue. On each L2 miss,
the IB-entry identifier of the load instruction is recorded
because, when the L2 miss is resolved, the scanner uses this
identifier to start searching for instructions dependent on the
load.

The scanner module analyses as many consecutive entries
in IB as the issue width. Instructions dependent on the load
(and not dependent on more unresolved L2 misses) are
inserted to the issue queue. While the scanner analyses IB
entries, other L2 miss can be resolved. If the latest resolved
load is older than the instruction that is being analysed, the
scanner goes back to the IB entry related to the latest miss and
proceeds analysing from there. When the scanner reaches the
youngest instruction in IB, scanning finishes. Moreover, the
IB is also used for recovery actions: memory disambiguation
and lacking of MSHR entries. According to the categorization
presented in [7], the replay mechanism used by the baseline
processor performs serial verification and selective replay.

Fig. 2. Block diagram of the Late-Inserting mechanims (differences respect
baseline processor have been shaded).
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B. Extensions to the baseline processor: late inserting mecha-
nism

Fig. 2 shows a block diagram of the processor with thelate
inserting mechanism. The proposed mechanism relays on
predicting whether a load instruction will miss L2 or not. The
L2 hit-miss predictor is accessed early in the pipeline using
the PC of the load instruction. This prediction is propagated
to the instructions dependent on the load instruction in the
Rename phase. The prediction is used in the Filter phase.
While the load instruction predicted to miss L2 is inserted to
the issue queue, its dependent instructions are not. All
instructions are kept in the IB. When the L2 miss gets
resolved, the IB is scanned in order to insert the instructions
dependent on the resolved L2 miss.

III. L 2 HIT-MISS PREDICTION

This section details the L2 hit-miss predictor developed in
this work. Before starting the development of the L2 hit-miss
predictor, Table I shows the number of L2 misses per 1000
committed instructions in each analysed benchmark (bench-
mark selection and processor configuration is detailed in
Section A).

To avoid inserting in the issue queue instructions depen-
dent on L2 misses we use a predictor that is accessed early in
the pipeline. We adapt to L2 hit-miss prediction the percep-
tron predictor [4]. Several researchers have applied the per-
ceptron predictor to branch prediction with promising
predictability results [5]. The main drawback of the percep-
tron predictor is its latency; however, as our mechanism needs
the L2 hit-miss prediction in the Register Renaming stage, we
can tolerate perceptron latency.

Perceptron predictors use a global history register and a
prediction table. The global history register is updated specu-
latively after performing every prediction; to recover the glo-
bal history register after a branch missprediction, each
conditional branch instruction checkpoints the current value
of the global history register. The prediction table is updated
at commit stage.

In the scope of L2 hit-miss prediction, misspredicting a
load instruction of the correct execution path influences to the
following hit-miss predictions of the correct execution path
until the missprediction is extracted from the global history
register. In the scope of branch prediction, this behaviour does
not appear; after detecting a branch misprediction, the branch

history register is restored when the fetch engine is redirected
to the correct target. Consequently, we have evaluated the
influence on predictor performance of correcting the history
register as soon as the hit-miss prediction is known to be
incorrect.

Fig. 3 plots the evaluations performed in our exploration of
the design space of the predictor. The vertical axis shows the
percent of dynamic load instructions. Each column is related
to a predictor configuration. For each configuration, we dis-
tribute the dynamic load instructions into: L2 misses correctly
predicted, L2 misses predicted to hit L2 and L2 hits predicted
to miss L2. The remaining portion of each bar until the 100%
stands for correctly predicted L2 hits. We present two group
of results: for integer and for floating-point benchmarks.

Fig. 3. Predictability results of several configurations of the perceptron pre-
dictor.

We describe the evaluations we have performed (unless
noted, we use an unbounded prediction table, a 31-bit global
history register and 7-bit counters).
• Upper limit: To establish an upper limit of the performance of

the predictor, we simulated a perceptron updated at commit
stage with correct L2 hit-miss information. Coverage is around
83% and 97% of the L2 misses in integer and floating-point
benchmarks respectively.

• Non-correcting global history register: We conducted a
simulation where the global history register is updated
speculatively and it is not corrected on L2 hit-miss
mispredictions. The increment on the amount of L2 misses
predicted to hit is produced because each L2 hit-miss
missprediction introduces a wrong value in the global history
register that influences following predictions until the

Integer
benchmarks

bzip2 crafty eon gap gcc gzip
0.3 6.4 1.2 4.0 1.1 1.2
mcf parser perl twolf vortex vpr
47.2 7.7 2.6 18.0 6.7 12.1

Floating-point
benchmarks

ammp applu apsi art equake facerec fma3d
40.5 75.0 33.1 155.8 6.1 51.4 12.5

galgel lucas mesa mgrid sixtrack swim wupwise
219.2 2.9 0.8 21.8 1.1 98.1 8.0

TABLE I Benchmark characterization according to the number of L2 misses
per 1000 committed instructions
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misprediction is evicted from the global history register.
• Extending the global history register with execution-path

information: The global history register is extended with 32
bits that represent the execution path. It is formed by
concatenating the four least-significant bits of the instruction
addresses of the latest eight predicted instructions. In integer
benchmarks, L2-misses coverage is increased significantly.

• Correcting the global history register: The global history
register is updated speculatively and it is corrected as soon as
an L2 hit-miss prediction is known to be incorrect. Coverage is
closer to upper limit (77% and 95% for integer and floating-
point benchmarks). Correcting the global history register
reduces the amount of L2 misses predicted to hit.

• Filtering predictions: A significant number of the static load
instructions never miss L2 (70% and 50% for integer/floating-
point benchmarks) and represent a significant amount of
dynamic load instructions (around 30%). We have considered
training the perceptron predictor only with the load instructions
that have missed L2. The advantages of filtering are twofold:
firstly, allows correlating load instructions using shorter global
history registers; secondly, reduces the number of predictions
performed by the perceptron predictor. Results show that
filtering increments slightly the amount of L2 misses predicted
to miss and reduces around 30% the amount of perceptron
lookups.

• Selected configuration: After evaluating several predictor
configurations, we have selected the following perceptron
configuration: 256 table entries, 11-bit global history register,
7-bit counters and filtering using a 2Kbit table; the hardware
budget of the configuration is less than 3Kbytes.

Fig. 4. Individual prediction breakdown

Fig. 4 shows individual predictability results with the

selected predictor configuration. To simplify result compari-
son, the vertical axis stands for the amount of L2 hit-miss pre-
dictions per 1000 committed instructions and, for each
benchmark, we present the same prediction breakdown as in
Fig. 3.

IV. EVALUATION

A. Evaluation environment

1) Simulator
To evaluate our proposals we will use several processor

simulators derived from the SimpleScalar tool set [1]. This
tool set offers a cycle-by-cycle simulator of a superscalar out-
of-order processor with a two-level cache hierarchy. We have
added to the simulator issue queues, L2 miss predictors and
the mechanisms proposed to deal with instructions dependent
on L2 misses.

2) Processor model
Table II details the main parameters of the evaluated pro-

cessors. We have considered a large reorder buffer (2048
entries) to help the processor to tolerate the latency of L2
misses (400 cycles). Processor pipeline has two stages
between instruction issue and the functional units.

Benchmark description.To evaluate our proposal we sim-
ulate the execution of a representative interval of 100 million
instructions of each Spec2000 benchmark [16]. Before start-
ing each simulation, we have warmed-up caches and branch
predictors. Binaries have been obtained compiling with full
optimizations on an Alpha machine. Table I lists these bench-
marks and details the L2 miss rate.

B. Results

1) Instruction replays
Fig. 5-a shows the number of instructions replayed by the

baseline processor and by our proposal. The vertical axis
shows the amount of instructions replays per 1000 committed
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INT

FP

L2 hit pred to miss

L2 miss pred to hit
L2 miss pred to miss

Fetch width 4 instructions
Branch prediction hybrid predictor 16-bit gshare & bimodal, 1024-

entry BTB, 32-entry RAS, 10 cycles misprediction
latency

Issue width 4 instructions
Issue Queues 2 queues (integer IQ and floating-point IQ), same

size (20, 30, or 40 entries)
Commit width 8 instructions
Functional units 4 integer alus, 1 integer multiplier/divider, 2 FP

alus, 1 FP divider, 2 memory ports
ROB 2048 entries
LSQ 1024 entries
Instruction L1 32 Kb, direct mapped, 2-cycle hit latency
Data L1 32 Kb, 2way, 2-cycle hit latency
Unified L2 256 Kb, direct-mapped, 9 cycle hit latency, 400

cycles miss latency
Instruction TLB 32 entry, 4-way
Data TLB 64 entry, 8-way
MSHR 10 entries

TABLE II Processor configuration



instructions for several issue-queue sizes. To remove the
influence of the instructions of the wrong execution path, we
consider only instructions issued of the correct execution
path. Due to the biased behaviour of benchmarkmcf, we
present average results for all integer benchmarks but bench-
mark mcf, all integer benchmarks and all floating-point
benchmarks. For instance, for floating-point benchmarks,
while the baseline processor performs around 300 instruction
replays per 1000 instruction commits, our proposal performs
200 replays per 1000 instruction commits. The reduction in
the number of instruction replays is between 27%-31% in
integer benchmarks butmcf, and between 33% and 39% in
floating-point benchmarks.

Using our proposal, the reduction in the number of replays
depends on the number of correct predictions and on the
length of the chain of instructions dependent on the load
instructions predicted to miss in L2. Consequently, using our

proposal, the number of replays is almost no sensitive on the
issue-queue size; however, using the baseline processor, the
number of replays is sensitive to the issue-queue size.

Using larger issue queues allows inserting more instruc-
tions in the issue queue before the issue queue becomes full.
If the inserted instructions are dependent on a load that misses
L2, the mechanism will perform more replays. For instance,
in average, inapsi benchmark, each load instruction predicted
to miss L2 reduces 5 replays; however, inparser benchmark,
each load instruction predicted to miss L2 reduces 40 replays.

Fig. 5-b and c details the replay reduction for each bench-
mark. We plot the number of replays performed by both the
baseline processor and our proposal per 1000 committed
instructions for several issue-queue sizes. Except two bench-
marks, there is not a clear correlation between the issue-queue
size and the number of replay reductions.

2) Processor performance
Although our proposal reduces the number of instruction

replays, it may impact on processor performance because it
may delay unnecessarily the insertion of some instructions in
the issue queue. Our results show that, in average, our pro-
posal does not harm IPC with respect to the baseline proces-
sor.

Fig. 6 shows, for each benchmark, the relative processor
performance of our proposal with respect to the performance

of the Baseline processor. The individual results show that the
processor performance using our proposal is, except ingalgel
benchmark, at most, 1% worse than that of Baseline proces-
sor. In some benchmarks we obtain performance improve-
ments around 2% (apsi, mgrid and swim) and, in applu
benchmark, we obtain, at least, around 7% performance
improvement.

The exceptional behaviour ofapplu benchmark can be
explained because our proposal increases the average amount
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of free entries in the 20-entry floating-point issue queue (from
5.8 to 8.9 entries) and reduces the amount of cycles the float-
ing-point issue queue is full (from 56% to 38% of the execu-
tion cycles). Consequently, using our proposal, floating-point

instructions independent on L2 misses may be inserted in the
issue queue and may be issued before than using the Baseline
processor and, according to the instant when misses get
resolved, also be committed before.

V. RELATED WORK

Several works ([11], [8], [12], [17], [2]) improve the man-
agement of the issue-queue entries assigned to instructions
dependent on long-latency instructions. In thies works,
instructions are extracted from the issue queue when an L1 or
L2 miss is detected. After that, the extracted instructions are
inserted in a buffer waiting for resolving the miss. Conse-
quently, instructions dependent on misses are issued, at least,
twice. Our proposal relays on delaying the insertion of
instructions dependent on L2 misses in the issue queue in
order to issue the instructions only once.

Kessler [6], Yoaz et al. [18] and Peir et al. [14] proposed
the use of a L1 hit-miss predictor to improve the scheduling
of the instructions dependent on load instructions. The pro-
posals differ in the hit-miss prediction mechanism. While
Kessler implements the predictor with a a 4-bit saturating
counter, Yoaz et al. adapted a predictor used in branch predic-
tion (the local predictor), and Peir et al. employed a bloom fil-
ter indexed by some bits of the effective address of the load
instruction. Peir’s proposal accesses the hit-miss predictor
after issuing the load instructions and obtain the prediction
just in time to prevent waking-up the instructions dependent
on loads predicted to miss. Our proposal differs from all these

proposals because we use L2 hit-miss prediction to delay the
insertion of instructions in the issue queue .

Memik et al. [9] proposed the use of hit-miss prediction to
reduce the access times and power consumption in processors
with multi-level caches. After computing the effective address
of a load instruction, they predict its location in the cache
hierarchy; consequently, only the predicted level is accessed,
reducing the access time and the power consumption with
respect to a conventional hierarchy.

Liu et al. [15] perform L1- and L2 hit-miss prediction in
order to estimate the issue cycle of all instructions. This esti-
mation is used to preschedule the instructions. The authors
use a hit-miss predictor feed by an address predictor of the
effective addresses computed by the load instructions. Our
work differs from this proposal in two main aspects: first, our
hit-miss predictor does not rely on address prediction; second,
we do not preschedule the instructions according to the pre-
diction.

VI. CONCLUSIONS

The baseline processor considered in this paper is a proces-
sor that extracts from the issue queue the instructions depen-
dent on load instructions that miss L2 and, after the L2 miss is
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resolved, re-inserts the instructions into the issue queue in
order to be re-issued (replayed). In this context, the goal of
this paper is reducing the number of replays due to load
instructions that miss in L2.

We have proposed predicting whether a load instruction
will miss L2 or not, in order to delay the insertion into the
issue queue of the instructions dependent on the load instruc-
tions predicted to miss L2. To perform L2 hit-miss prediction
we use a perceptron predictor that is accessed in early stages
of the pipeline using the instruction address of the load
instructions. Our evaluations show a reduction in the number
of instruction replays between 27% and 31% in integer
benchmarks and between 33% and 39% in floating-point
benchmarks without harming processor performance. Our
future work includes evaluating the energy savings achieved
through the reduction in instruction replays.
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