MLP-Aware Dynamic Cache Partitioning

Miquel Moreto¹, Francisco J. Cazorla², Alex Ramirez¹,², and Mateo Valero¹,²

¹ Universitat Politècnica de Catalunya, DAC, Barcelona, Spain
HiPEAC European Network of Excellence
² Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Spain
{mmoreto,aramirez,mateo}@ac.upc.edu, francisco.cazorla@bsc.es

Abstract. Dynamic partitioning of shared caches has been proposed to improve performance of traditional eviction policies in modern multi-threaded architectures. All existing Dynamic Cache Partitioning (DCP) algorithms work on the number of misses caused by each thread and treat all misses equally. However, it has been shown that cache misses cause different impact in performance depending on the distribution of the Memory Level Parallelism (MLP) of the application L2 misses: clustered misses share their miss penalty as they can be served in parallel, while isolated misses have a greater impact as the memory latency is not shared with other misses.

We take this fact into account and propose a new DCP algorithm that considers misses differently depending on their influence in throughput. Our proposal obtains improvements over traditional traditional eviction policies up to 63.9% (10.6% on average) and it also outperforms previous DCP proposals by up to 15.4% (4.1% on average) in a four-core architecture. Finally, we give a practical implementation with a hardware cost under 1% of the total L2 cache size.

1 Introduction

The limitation imposed by instruction-level parallelism (ILP) has motivated the use of thread-level parallelism (TLP) as a common strategy for improving processor performance. TLP paradigms such as simultaneous multithreading (SMT) [1,2], chip multiprocessor (CMP) [3] and combinations of both offer the opportunity to obtain higher throughputs. However, they also have to face the challenge of sharing resources of the architecture. Simply avoiding any resource control can lead to undesired situations where one thread is monopolizing all the resources and harming the other threads. Some studies deal with the resource sharing problem in SMTs at core level resources like issue queues, registers, etc. [4]. In CMPs, resource sharing is focused on the cache hierarchy.

Some applications present low reuse of their data and pollute caches with data streams, such as multimedia, communications or streaming applications, or have many compulsory misses that cannot be solved by assigning more cache space to the application. Traditional eviction policies such as Least Recently Used (LRU), pseudo LRU or random are demand-driven, that is, they tend to give more space to the application that has more accesses to the cache hierarchy.
As a consequence, some threads can suffer a severe degradation in performance. Previous work has tried to solve this problem by using static and dynamic partitioning algorithms that monitor the L2 cache accesses and decide a partition for a fixed amount of cycles in order to maximize throughput \[5,6,7\] or fairness \[8\]. Basically, these proposals predict the number of misses per application for each possible cache partition. Then, they use the cache partition that leads to the minimum number of misses for the next interval.

A common characteristic of these proposals is that they treat all L2 misses equally. However, it has been shown that L2 misses affect performance differently depending on how clustered they are. An isolated L2 miss has approximately the same miss penalty than a cluster of L2 misses, as they can be served in parallel if they all fit in the reorder buffer (ROB) \[9\]. In Figure 1 we can see this behavior. We have represented an ideal IPC curve that is constant until an L2 miss occurs. After some cycles, commit stops. When the cache line comes from main memory, commit ramps up to its steady state value. As a consequence, an isolated L2 miss has a higher impact on performance than a miss in a burst of misses as the memory latency is shared by all clustered misses.

Based on this fact, we propose a new DCP algorithm that gives a cost to each L2 access according to its impact in final performance. We detect isolated and clustered misses and assign a higher cost to isolated misses. Then, our algorithm determines the partition that minimizes the total cost for all threads, which is used in the next interval. Our results show that differentiating between clustered and isolated L2 misses leads to cache partitions with higher performance than previous proposals. The main contributions of this work are the following.

1) A runtime mechanism to dynamically partition shared L2 caches in a CMP scenario that takes into account the MLP of each L2 access. We obtain improvements over LRU up to 63.9% (10.6% on average) and over previous proposals up to 15.4% (4.1% on average) in a four-core architecture.

2) We extend previous workloads classifications for CMP architectures with more than two cores. Results can be better analyzed in every workload group.

3) We give a sampling technique that reduces the hardware cost in terms of storage under 1% of the total L2 cache size with an average throughput degradation of 0.76% (compared to the throughput obtained without sampling).

The rest of this paper is structured as follows. In Section 2 we introduce the methods that have been previously proposed to decide L2 cache partitions and...
related work. Next, in Section 3 we explain our MLP-aware DCP algorithm. In Section 4 we describe the experimental environment and in Section 5 we discuss simulation results. Finally, we conclude with Section 6.

2 Prior Work in Dynamic Cache Partitioning

Stack Distance Histogram. Mattson et al. introduce the concept of stack distance to study the behavior of storage hierarchies [10]. Common eviction policies such as LRU have the stack property. Thus, each set in a cache can be seen as an LRU stack, where lines are sorted by their last access cycle. In that way, the first line of the LRU stack is the Most Recently Used (MRU) line while the last line is the LRU line. The position that a line has in the LRU stack when it is accessed again is defined as the stack distance of the access. As an example, we can see in Table 1(a) a stream of accesses to the same set with their corresponding stack distances.

<table>
<thead>
<tr>
<th># Accesses</th>
<th>60</th>
<th>20</th>
<th>10</th>
<th>5</th>
</tr>
</thead>
</table>

For a K-way associative cache with LRU replacement algorithm, we need $K+1$ counters to build SDHs, denoted $C_1, C_2, \ldots, C_K, C_{>K}$. On each cache access, one of the counters is incremented. If it is a cache access to a line in the i^{th} position in the LRU stack of the set, C_i is incremented. If it is a cache miss, the line is not found in the LRU stack and, as a result, we increment the miss counter $C_{>K}$. SDH can be obtained during execution by running the thread alone in the system [5] or by adding some hardware counters that profile this information [6,7]. A characteristic of these histograms is that the number of cache misses for a smaller cache with the same number of sets can be easily computed. For example, for a K'-way associative cache, where $K' < K$, the new number of misses can be computed as $\text{misses} = C_{>K} + \sum_{i=K'+1}^{K} C_i$.

As an example, in Table 1(b) we show a SDH for a set with 4 ways. Here, we have 5 cache misses. However, if we reduce the number of ways to 2 (keeping the number of sets constant), we will experience 20 misses ($5 + 5 + 10$).

Minimizing Total Misses. Using the SDHs of N applications, we can derive the L2 cache partition that minimizes the total number of misses: this last number corresponds to the sum of the number of misses of each thread with the assigned number of ways. The optimal partition in the last period of time is a suitable candidate to become the future optimal partition. Partitions are decided periodically after a fixed amount of cycles. In this scenario, partitions are decided at a way granularity. This mechanism is used in order to minimize the
total number of misses and try to maximize throughput. A first approach proposed a static partitioning of the L2 cache using profiling information [5]. Then, a dynamic approach estimated SDHs with information inside the cache [7]. Finally, Qureshi et al. presented a suitable and scalable circuit to measure SDHs using sampling and obtained performance gains with just 0.2% extra space in the L2 cache [6]. Throughout this paper, we will call this last policy MinMisses.

Fair Partitioning. In some situations, MinMisses can lead to unfair partitions that assign nearly all the resources to one thread while harming the others [8]. For that reason, the authors propose considering fairness when deciding new partitions. In that way, instead of minimizing the total number of misses, they try to equalize the statistic $X_i = \frac{\text{misses}_{\text{shared}}}{\text{misses}_{\text{alone}}} \text{ of each thread } i$. They desire to force all threads to have the same increase in percentage of misses. Partitions are decided periodically using an iterative method. The thread with largest X_i receives a way from the thread with smallest X_i until all threads have a similar value of X_i. Throughout this paper, we will call this policy Fair.

Table 2. Different Partitioning Proposals

<table>
<thead>
<tr>
<th>Paper</th>
<th>Partitioning</th>
<th>Objective</th>
<th>Decision</th>
<th>Algorithm</th>
<th>Eviction Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>Static</td>
<td>Minimize Misses</td>
<td>Programmer</td>
<td>–</td>
<td>Column Caching</td>
</tr>
<tr>
<td>[7]</td>
<td>Dynamic</td>
<td>Minimize Misses</td>
<td>Architecture</td>
<td>Marginal Gain</td>
<td>Augmented LRU</td>
</tr>
<tr>
<td>[8]</td>
<td>Dynamic</td>
<td>Fairness</td>
<td>Architecture</td>
<td>Equalize X_i</td>
<td>Augmented LRU</td>
</tr>
</tbody>
</table>

Other Related Work. Several papers propose different DCP algorithms in a multithreaded scenario. In Table 2 we summarize these proposals with their most significant characteristics. Rafique et al. propose to manage shared caches with a hardware cache quota enforcement mechanism and an interface between the architecture and the OS to let the latter decide quotas [11]. We have to note that this mechanism is completely orthogonal to our proposal and, in fact, they are compatible as we can let the OS decide quotas according to our scheme. Hsu et al. evaluate different cache policies in a CMP scenario [12]. They show that none of them is optimal among all benchmarks and that the best cache policy varies depending on the performance metric being used. Thus, they propose to use a thread-aware cache resource allocation. In fact, their results reinforce the motivation of our paper: if we do not consider the impact of each L2 miss in performance, we can decide suboptimal L2 partitions in terms of throughput.

Cache partitions at a way granularity can be implemented with column caching [5], which uses a bit mask to mark reserved ways, or by augmenting the LRU policy with counters that keep track of the number of lines in a set belonging to a thread [7]. The evicted line will be the LRU line among its owned lines or other threads lines depending on weather it reaches its quota or not.

In [13] a new eviction policy for private caches was proposed in single-threaded architectures. This policy gives a weight to each L2 miss according to its MLP
when the block is filled from memory. Eviction is decided using the LRU counters and this weight. This idea was proposed for a different scenario as it focuses on single-threaded architectures.

3 MLP-Aware Dynamic Cache Partitioning

3.1 Algorithm Overview

The algorithm steps to decide dynamic cache partitions according to the MLP of each L2 access can be seen in Algorithm 1. When we start executing different applications in our CMP architecture, we have to decide an initial partition of the L2 cache. As we have no prior knowledge of the applications, we choose to assign \(\frac{N}{K} \) ways to each core.

\[
\begin{align*}
\text{Step 1:} & \quad \text{Establish an initial even partition for each core;} \\
\text{Step 2:} & \quad \text{Run threads and collect data for the MLP-aware SDHs;} \\
\text{Step 3:} & \quad \text{Decide new partition;} \\
\text{Step 4:} & \quad \text{Update MLP-aware SDHs;} \\
\text{Step 5:} & \quad \text{Go back to Step 2;}
\end{align*}
\]

Algorithm 1. MLP-Aware dynamic cache partitioning algorithm

Afterwards, we begin a period of measuring the total MLP cost of each application. We denote MLP-aware SDH the histogram of each thread containing the total MLP cost for each possible partition. For small values of this period, DCP algorithms react quicker to phase changes. However, the overhead of this method also increases. Small performance variations are obtained for different periods from \(10^5\) to \(10^8\) cycles, with a peak for a period of 5 million cycles.

When this interval ends, MLP-aware SDHs are analyzed and a new partition is decided for the next interval. We assume that we will have a similar pattern of L2 accesses in the next measuring period. Thus, the optimal partition for the last period will be chosen for the following period. Evaluating all possible combinations gives the optimal partition. However, this algorithm does not scale adequately when associativity and the number of cores is raised. If we have a \(K\)-way associativity L2 cache shared by \(N\) cores, the number of possible partitions without considering the order is \(\binom{N+K-1}{K}\). For example, for 8 cores and 16 ways, we have 245157 possible combinations. Several heuristics have been proposed to reduce the number of cycles required to decide the new partition \([6,7]\), which can be used in our situation. These proposals bound the decision period by 10000 cycles. This overhead is very low compared to 5 million cycles (under 0.2%).

Since characteristics of applications dynamically change, MLP-aware SDHs should reflect these changes. However, we also wish to maintain some history of the past MLP-aware SDHs to make new decisions. Thus, after a new partition is decided, we multiply all the values of the MLP-aware SDHs times \(\rho \in [0,1]\). Large values of \(\rho\) have larger reaction times to phase changes, while small values
of ρ quickly adapt to phase changes but tend to forget the behavior of the application. Small performance variations are obtained for different values of ρ ranging from 0 to 1, with a peak for $\rho = 0.5$. Furthermore, this value is very convenient as we can use a shifter to update histograms. Next, a new period of measuring MLP-aware SDHs begins. The key contribution of this paper is the method to obtain MLP-aware SDHs that we explain in the following Subsection.

3.2 MLP-Aware Stack Distance Histogram

As previously stated, MinMisses assumes that all L2 accesses are equally important in terms of performance. However, this is not always true. Cache misses affect differently the performance of applications, even inside the same application. As was said in [9], an isolated L2 data miss has a penalty cost that can be approximated by the average memory latency. In the case of a burst of L2 data misses that fit in the ROB, the penalty cost is shared among misses as L2 misses can be served in parallel. In case of L2 instruction misses, they are serialized as fetch stops. Thus, L2 instruction misses have a constant miss penalty and MLP.

We want to assign a cost to each L2 access according to its effect on performance. In [13] a similar idea was used to modify LRU eviction policy for single core and single threaded architectures. In our situation, we have a CMP scenario where the shared L2 cache has a number of reserved ways for each core. At the end of a measuring period, we can decide to continue with the same partition or change it. If we decide to modify the partition, a core i that had w_i reserved ways will receive $w'_i \neq w_i$. If $w_i < w'_i$, the thread receives more ways and, as a consequence, some misses in the old configuration will become hits. Conversely, if $w_i > w'_i$, the thread receives less ways and some hits in the old configuration will become misses. Thus, we want to have an estimation of the performance effects when misses are converted into hits and vice versa. Throughout this paper, we will call this impact on performance MLP\textsubscript{cost}. All accesses are treated as if they were in the correct path until the branch prediction is checked. All misses on the wrong path are not considered as accesses in flight.

MLP\textsubscript{cost} of L2 misses. If we force an L2 configuration that assigns exactly $w'_i = d_i$ ways to thread i with $w'_i > w_i$, some of the L2 misses of this thread will

![Fig. 2. Miss Status Holding Register](image-url)
become hits, while other will remain misses, depending on their stack distance. In order to track the stack distance and \textit{MLP cost} of each L2 miss, we have modified the L2 Miss Status Holding Registers (MSHR) [13]. This structure is similar to an L2 miss buffer and is used to hold information about any load that has missed in the L2 cache. The modified L2 MSHR has one extra field that contains the \textit{MLP cost} of the miss as can be seen in Figure 2(b). It is also necessary to store the stack distance of each access in the MSHR. In Figure 2(a) we show the MSHR in the cache hierarchy.

When the L2 cache is accessed and an L2 miss is determined, we assign an MSHR entry to the miss and wait until the data comes from Main Memory. We initialize the \textit{MLP cost} field to zero when the entry is assigned. We store the access stack distance together with the identifier of the owner core. Every cycle, we obtain \(N\), the number of L2 accesses with stack distance greater or equal to \(d_i\). We have a hardware counter that tracks this number for each possible number of \(d_i\), which means a total of \textit{Associativity} counters. If we have \(N\) L2 misses that are being served in parallel, the miss penalty is shared. Thus, we assign an equal share of \(\frac{1}{N}\) to each miss. The value of the \textit{MLP cost} is updated until the data comes from Main Memory and fills the L2. At this moment we can free the MSHR entry.

\textbf{MLP cost of L2 hits.} Next, we want to estimate the \textit{MLP cost} of an L2 hit with stack distance \(d_i\) when it becomes a miss. If we forced an L2 configuration that assigned exactly \(w'_i = d_i\) ways to the thread \(i\) with \(w'_i < w_i\), some of the L2 hits of this thread would become misses, while L2 misses would remain as misses. The hits that would become misses are the ones with stack distance greater or equal to \(d_i\). Thus, we count the total number of accesses with stack distance greater or equal to \(d_i\) (including L2 hits and misses) to estimate the length of the cluster of L2 misses in this configuration.

Deciding the moment to free the entry used by an L2 hit is more complex than in the case of the MSHR. As it was said in [9], in a balanced architecture, L2 data misses can be served in parallel if they all fit in the ROB. Equivalently, we say that L2 data misses can be served in parallel if they are at ROB distance smaller than the ROB size. Thus, we should free the entry if the number of committed instructions since the access has reached the ROB size or if the number of cycles since the hit has reached the average latency to memory. The first condition is clear as we have said that L2 accesses can overlap if their ROB distance is less than the ROB size. The second condition is also necessary as it can occur that no L2 access is done for a period of time. To obtain the average latency to memory, we add a specific hardware that counts and averages the number of cycles that a given entry is in the MSHR.

We use new hardware to obtain the \textit{MLP cost} of L2 hits. We denote this hardware Hit Status Holding Registers (HSHR) as it is similar to the MSHR. However, the HSHR is private for each core. In each entry, the HSHR needs an identifier of the ROB entry of the access, the address accessed by the L2 hit, the stack distance value and a field with the corresponding \textit{MLP cost} as can be seen in Figure 3(b). In Figure 3(a) we show the HSHR in the cache hierarchy.
When the L2 cache is accessed and an L2 hit is determined, we assign an HSHR entry to the L2 hit. We initial the fields of the entry as in the case of the MSHR. We have a stack distance d_i and we want to update the MLP_{cost} field in every cycle. With this objective, we need to know the number of active entries with stack distance greater or equal to d_i in the HSHR, which can be tracked with one hardware counter per core. We also need a ROB entry identifier for each L2 access. Every cycle, we obtain N, the number of L2 accesses with stack distance greater or equal to d_i as in the L2 MSHR case. We have a hardware counter that tracks this number for each possible number of d_i, which means a total of Associativity counters.

In order to avoid array conflicts, we need as many entries in the HSHR as possible L2 accesses in flight. This number is equal to the L1 MSHR size. In our scenario, we have 32 L1 MSHR entries, which means a maximum of 32 in flight L2 accesses per core. However, we have checked that we have enough with 24 entries to ensure that we have an available slot 95% of the time in an architecture with a ROB of 256 entries. If there are no available slots, we simply assign the minimum weight to the L2 access as there are many L2 accesses in flight.

Quantification of MLP_{cost}. Dealing with values of MLP_{cost} between 0 and the memory latency (or even greater) can represent a significant hardware cost. Instead, we decide to quantify this MLP_{cost} with an integer value between 0 and 7 as was done in [13]. For a memory latency of 300 cycles, we can see in Table 3 how to quantify the MLP_{cost}. We have split the interval [0;300] with 7 intervals of equal length.

Finally, when we have to update the corresponding MLP-aware SDH, we add the quantified value of MLP_{cost}. Thus, isolated L2 misses will have a weight

<table>
<thead>
<tr>
<th>MLP_{cost}</th>
<th>Quantification</th>
<th>MLP_{cost}</th>
<th>Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 0 to 42 cycles</td>
<td>0</td>
<td>From 171 to 213 cycles</td>
<td>4</td>
</tr>
<tr>
<td>From 43 to 85 cycles</td>
<td>1</td>
<td>From 214 to 246 cycles</td>
<td>5</td>
</tr>
<tr>
<td>From 86 to 128 cycles</td>
<td>2</td>
<td>From 247 to 300 cycles</td>
<td>6</td>
</tr>
<tr>
<td>From 129 to 170 cycles</td>
<td>3</td>
<td>300 or more cycles</td>
<td>7</td>
</tr>
</tbody>
</table>
of 7, while two overlapped L2 misses will have a weight of 3 in the MLP-aware SDH. In contrast, MinMisses always adds one to its histograms.

3.3 Obtaining Stack Distance Histograms

Normally, L2 caches have two separate parts that store data and address tags to know if the access is a hit. Basically, our prediction mechanism needs to track every L2 access and store a separated copy of the L2 tags information in an Auxiliary Tag Directory (ATD), together with the LRU counters [6]. We need an ATD for each core that keeps track of the L2 accesses for any possible cache configuration. Independently of the number of ways assigned to each core, we store the tags and LRU counters of the last K accesses of the thread, where K is the L2 associativity. As we have explained in Section 2 an access with stack distance d_i corresponds to a cache miss in any configuration that assigns less than d_i ways to the thread. Thus, with this ATD we can determine whether an L2 access would be a miss or a hit in all possible cache configurations.

3.4 Putting All Together

In Figure 4 we can see a sketch of the hardware implementation of our proposal. When we have an L2 access, the ATD is used to determine its stack distance d_i. Depending on whether it is a miss or a hit, either the MSHR or the HSHR is used to compute the MLP_{cost} of the access. Using the quantification process we obtain the final MLP_{cost}. This number estimates how performance is affected when the applications has exactly $w'_i = d_i$ assigned ways. If $w'_i > w_i$, we are estimating the performance benefit of converting this L2 miss into a hit. In case $w'_i < w_i$, we are estimating the performance degradation of converting this L2 hit into a miss. Finally, using the stack distance, the MLP_{cost} and the core identifier, we can update the corresponding MLP-aware SDH.

![Fig. 4. Hardware implementation](image)
We have used two different partitioning algorithms. The first one, that we denote
MLP-DCP (standing for MLP-aware Dynamic Cache Partitioning), decides the optimal partition according to the MLP\text{_cost} of each way. We define the total MLP\text{_cost} of a thread \(i \) that uses \(w_i \) ways as
\(TMLP(i, w_i) = MLP_{SDH_{i,k}} + \sum_{j=1}^{K} MLP_{SDH_{i,j}} \). We denote the total MLP\text{_cost} of all accesses of thread \(i \) with stack distance \(j \) as MLP\text{_SDH}_{i,j}. Thus, we have to minimize the expression \(\sum_{i=1}^{N} TMLP(i, w_i) \), where \(\sum_{i=1}^{N} w_i = \text{Associativity} \).

The second one consists in assigning a weight to each total MLP\text{_cost} using the IPC of the application in core \(i \), IPC\text{_i}. In this situation, we are giving priority to threads with higher IPC. This point will give better results in throughput at the cost of being less fair. IPC\text{_i} is measured at runtime with a hardware counter per core. We denote this proposal MLP_IPC-DCP, which consists in minimizing the expression \(\sum_{i=1}^{N} IPC_{i} \cdot TMLP(i, w_i) \), where \(\sum_{i=1}^{N} w_i = \text{Associativity} \).

4 Experimental Environment

We target this study to the case of a CMP with two and four cores with their respective own data and instruction L1 caches and a unified L2 cache shared among threads as in previous studies [8,6,7]. Each core is single-threaded and fetches up to 8 instructions each cycle. It has 6 integer (I), 3 floating point (FP), and 4 load/store functional units and 32-entry I, load/store, and FP instruction queues. Each thread has a 256-entry ROB and 256 physical registers. We use a two-level cache hierarchy with 64B lines with separate 16KB, 4-way associative data and instruction caches, and a unified L2 cache that is shared among all cores. We have used two different L2 caches, one of size 1MB and 16-way associativity, and the second one of size 2MB and 32-way associativity. Latency from L1 to L2 is 15 cycles, and from L2 to memory 300 cycles. We use a 32B width bus to access L2 and a multibanked L2 of 16 banks with 3 cycles of access time.

We extended the SMTSim simulator [2] to make it CMP. We collected traces of the most representative 300 million instruction segment of each program, following the SimPoint methodology [15]. We use the FAME simulation methodology [16] with a Maximum Allowable IPC Variance of 5%. This evaluation methodology measures the performance of multithreaded processors by reexecuting all threads in a multithreaded workload until all of them are fairly represented in the final IPC taken from the workload. As performance metrics we have used the IPC throughput, which corresponds to the sum of individual IPCs.

5 Evaluation Results

5.1 Workload Classification

In [17] two metrics are used to model the performance of a partitioning algorithm like MinMisses for pairings of benchmarks in the SPEC CPU 2000 benchmark suite. Here, we extend this classification for architectures with more cores.
Metric 1. The $w_{90\%}(B)$ metric measures the number of ways needed by a benchmark B to obtain at least a given percentage $P\%$ of its maximum IPC (when it uses all L2 ways).

The intuition behind this metric is to classify benchmarks depending on their cache utilization. Using $P = 90\%$ we can classify benchmarks into three groups: Low utility (L), Small working set or saturated utility (S) and High utility (H). L benchmarks have $1 \leq w_{90\%} \leq \frac{K}{8}$ where K is the L2 associativity. L benchmarks are not affected by L2 cache space because nearly all L2 accesses are misses. S benchmarks have $\frac{K}{8} < w_{90\%} \leq \frac{K}{2}$ and just need some ways to have maximum throughput as they fit in the L2 cache. Finally, H benchmarks have $w_{90\%} > \frac{K}{2}$ and always improve IPC as the number of ways given to them is increased. Clear representatives of these three groups are applu (L), gzip (S) and ammp (H) in Figure 5(a). In Table 4 we give $w_{90\%}$ for all SPEC CPU 2000 benchmarks.

<table>
<thead>
<tr>
<th>Bench</th>
<th>$w_{90%}$</th>
<th>APTC</th>
<th>IPC</th>
<th>Bench</th>
<th>$w_{90%}$</th>
<th>APTC</th>
<th>IPC</th>
<th>Bench</th>
<th>$w_{90%}$</th>
<th>APTC</th>
<th>IPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammp</td>
<td>14</td>
<td>23.63</td>
<td>1.27</td>
<td>applu</td>
<td>1</td>
<td>16.83</td>
<td>1.03</td>
<td>apsi</td>
<td>10</td>
<td>21.14</td>
<td>2.17</td>
</tr>
<tr>
<td>art</td>
<td>10</td>
<td>46.04</td>
<td>0.52</td>
<td>bzip2</td>
<td>1</td>
<td>1.18</td>
<td>2.62</td>
<td>crafty</td>
<td>4</td>
<td>7.66</td>
<td>1.71</td>
</tr>
<tr>
<td>eon</td>
<td>3</td>
<td>6.09</td>
<td>2.31</td>
<td>equake</td>
<td>1</td>
<td>18.6</td>
<td>0.27</td>
<td>facerec</td>
<td>11</td>
<td>10.96</td>
<td>1.16</td>
</tr>
<tr>
<td>fma3d</td>
<td>9</td>
<td>15.1</td>
<td>0.11</td>
<td>galgel</td>
<td>15</td>
<td>18.9</td>
<td>1.14</td>
<td>gap</td>
<td>1</td>
<td>2.68</td>
<td>0.96</td>
</tr>
<tr>
<td>gcc</td>
<td>3</td>
<td>6.97</td>
<td>1.64</td>
<td>gzip</td>
<td>4</td>
<td>21.5</td>
<td>2.20</td>
<td>lucas</td>
<td>1</td>
<td>7.60</td>
<td>0.35</td>
</tr>
<tr>
<td>mcf</td>
<td>1</td>
<td>9.12</td>
<td>0.96</td>
<td>mesq</td>
<td>2</td>
<td>3.98</td>
<td>3.04</td>
<td>mgrid</td>
<td>11</td>
<td>9.52</td>
<td>0.71</td>
</tr>
<tr>
<td>parser</td>
<td>11</td>
<td>9.09</td>
<td>0.89</td>
<td>perl</td>
<td>5</td>
<td>3.82</td>
<td>2.68</td>
<td>sixtrack</td>
<td>1</td>
<td>1.34</td>
<td>2.02</td>
</tr>
<tr>
<td>swim</td>
<td>1</td>
<td>28.0</td>
<td>0.40</td>
<td>twolf</td>
<td>15</td>
<td>12.0</td>
<td>0.81</td>
<td>vortex</td>
<td>7</td>
<td>0.65</td>
<td>1.35</td>
</tr>
<tr>
<td>vpr</td>
<td>14</td>
<td>11.9</td>
<td>0.97</td>
<td>wupw</td>
<td>1</td>
<td>5.99</td>
<td>1.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The average miss penalty of an L2 miss for the whole SPEC CPU 2000 benchmark suite is shown in Figure 5(b). We note that this average miss penalty varies a lot, even inside each group of benchmarks, ranging from 30 to 294 cycles. This Figure reinforces the main motivation of the paper, as it proves that the clustering level of L2 misses changes for different applications.
Metric 2. The \(w_{LRU}(th_i) \) metric measures the number of ways given by LRU to each thread \(th_i \) in a workload composed of \(N \) threads. This can be done simulating all benchmarks alone and using the frequency of L2 accesses for each thread \([18]\). We denote the number of L2 Accesses in a Period of one Thousand Cycles for thread \(i \) as \(APTC_i \). In Table 4 we list these values for each benchmark.

\[
\begin{align*}
\text{w}_{LRU}(th_i) &= \frac{\text{APTC}_i}{\sum_{j=1}^{N} \text{APTC}_j} \cdot \text{Associativity}
\end{align*}
\]

Next, we use these two metrics to extend previous classifications \([17]\) for workloads with more than two benchmarks.

Case 1. When \(w_{90\%}(th_i) \leq w_{LRU}(th_i) \) for all threads. In this situation LRU attains 90% of each benchmark performance. Thus, it is intuitive that in this situation there is very little room for improvement.

Case 2. When there exists two threads \(A \) and \(B \) such that \(w_{90\%}(th_A) > w_{LRU}(th_A) \) and \(w_{90\%}(th_B) < w_{LRU}(th_B) \). In this situation, LRU is harming the performance of thread \(A \), because it gives more ways than necessary to thread \(B \). Thus, in this situation LRU is assigning some shared resources to a thread that does not need them, while the other thread could benefit from these resources.

Case 3. Finally, the third case is obtained when \(w_{90\%}(th_i) > w_{LRU}(th_i) \) for all threads. In this situation, our L2 cache configuration is not big enough to assure that all benchmarks will have at least a 90% of their peak performance. In \([17]\) it was observed that pairings belonging to this group showed worse results when the value of \(|w_{90\%}(th_1) - w_{90\%}(th_2)| \) grows. In this case, we have a thread that requires much less L2 cache space than the other to attain 90% of its peak IPC. LRU treats threads equally and manages to satisfy the less demanding thread necessities. In case of MinMisses, it assumes that all misses are equally important for throughput and tends to give more space to the thread with higher L2 cache necessity, while harming the less demanding thread. This is a problem due to MinMisses algorithm. We will show in next Subsections that MLP-aware partitioning policies are available to overcome this situation.

<table>
<thead>
<tr>
<th>#cores</th>
<th>1MB 16-way</th>
<th>2MB 32-way</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
<td>Case 2</td>
</tr>
<tr>
<td>2</td>
<td>155 (48%)</td>
<td>135 (41%)</td>
</tr>
<tr>
<td>4</td>
<td>624 (4%)</td>
<td>12785 (86%)</td>
</tr>
<tr>
<td>6</td>
<td>306 (0.1%)</td>
<td>219790 (95%)</td>
</tr>
</tbody>
</table>

In Table 5 we show the total number of workloads that belong to each case for different configurations. We have generated all possible combinations without repeating benchmarks. The order of benchmarks is not important. In the case
of a 1MB 16-way L2, we note that Case 2 becomes the dominant case as the number of cores increases. The same trend is observed for L2 caches with larger associativity. In Table 5 we can also see the total number of workloads that belong to each case as the number of cores increases for a 32-way 2MB L2 cache. Note that with different L2 cache configurations, the value of $w_{90\%}$ and APTC, will change for each benchmark. An important conclusion from Table 5 is that as we increase the number of cores, there are more combinations that belong to the second case, which is the one with more improvement possibilities.

To evaluate our proposals, we randomly generate 16 workloads belonging to each group for three different configurations. We denote these configurations $2C$ (2 cores and 1MB 16-way L2), $4C-1$ (4 cores and 1MB 16-way L2) and $4C-2$ (4 cores and 2MB 32-way L2). We have also used a 2MB 32-way L2 cache as future CMP architectures will continue scaling L2 size and associativity. For example, the IBM Power5 [19] has a 10-way 1.875MB L2 cache and the Niagara 2 has a 16-way 4MB L2. Average improvements do consider the distribution of workloads among the three groups. We denote this mean weighted mean, as we assign a weight to the speed up of each case depending on the distribution of workloads from Table 5. For example, for the $2C$ configuration, we compute the weighted mean improvement as $0.48 \cdot x_1 + 0.41 \cdot x_2 + 0.11 \cdot x_3$, where x_i is the average improvement in Case i.

5.2 Performance Results

Throughput. The first experiment consists in comparing throughput for different DCP algorithms, using LRU policy as the baseline. We simulate MinMisses and our two proposals with the 48 workloads that were selected in the previous Subsection. We can see in Figure 6(a) the average speed up over LRU for these mechanisms. MLP-DCP systematically obtains the best average results, nearly doubling the performance benefits of MinMisses over LRU in the four-core configurations. In configuration $4C-1$, MLPIPC-DCP outperforms MinMisses by 4.1%. MLP-DCP always improves MinMisses but obtains worse results than MLPIPC-DCP.

All algorithms have similar results in Case 1. This is intuitive as in this situation there is little room for improvement. In Case 2, MinMisses obtains a

![Fig. 6. Average performance speed ups over LRU](image-url)
relevant improvement over LRU in configuration 2C. MLP-DCP and MLPIPC-DCP achieve an extra 2.5% and 5% improvement, respectively. In the other configurations, MLP-DCP and MLPIPC-DCP still outperform MinMisses by a 2.1% and 3.6%. In Case 3, MinMisses presents larger performance degradation as the asymmetry between the necessities of the two cores increases. As a consequence, it has worse average throughput than LRU. Assigning an appropriate weight to each L2 access gives the possibility to obtain better results than LRU using MLP-DCP and MLPIPC-DCP.

Fairness. We have used the harmonic mean of relative IPCs [20] to measure fairness. The relative IPC is computed as \(\frac{\text{IPC}_{\text{shared}}}{\text{IPC}_{\text{alone}}} \). In Figure 6(b) we show the average speed up over LRU of the harmonic mean of relative IPCs. *Fair* stands for the policy explained in Section 2. We can see that in all situations, MLP-DCP always improves over both MinMisses and LRU (except in Case 3 for two cores). It even obtains better results than Fair in configurations 2C and 4C-1. MLPIPC-DCP is a variant of the MLP-DCP algorithm optimized for throughput. As a consequence, it obtains worse results in fairness than MLP-DCP.

5.3 Hardware Cost

We have used the hardware implementation of Figure 5 to estimate the hardware cost of our proposal. In this Subsection, we focus our attention on the configuration 2C. We suppose a 40-bit physical address space. Each entry in the ATD needs 29 bits (1 valid bit + 24-bit tag + 4-bit for LRU counter). Each set has 16 ways, so we have an overhead of 58 Bytes (B) for each set. As we have 1024 sets, we have a total cost of 58KB per core.

The hardware cost that corresponds to the extra fields of each entry in the L2 MSHR is 5 bits for the stack distance and 2B for the MLP cost. As we have 32 entries, we have a total of 84B. HSHR entries need 1 valid bit, 8 bits to identify the ROB entry, 34 bits for the address, 5 bits for the stack distance and 2B for the MLP cost. In total we need 64 bits per entry. As we have 24 entries in each HSHR, we have a total of 192B per core. Finally, we need 17 counters of 4B for each MLP-Aware SDH, which supposes a total of 68B per core. In addition to the storage bits, we also need an adder for incrementing MLP-aware SDHs and a shifter to halve the hit counters after each partitioning interval.

![Fig. 7. Throughput and hardware cost depending on \(d_s \) in a two-core CMP](image)
Sampled ATD. The main contribution to hardware cost corresponds to the ATD. Instead of monitoring every cache set, we can decide to track accesses from a reduced number of sets. This idea was also used in [6] with MinMisses in a CMP environment. Here, we use it in a different situation, say to estimate MLP-aware SDHs with a sampled number of sets. We define a sampling distance d_s that gives the distance between tracked sets. For example, if $d_s = 1$, we are tracking all the sets. If $d_s = 2$, we track half of the sets, and so on. Sampling reduces the size of the ATD at the expense of less accuracy in MLP-aware SDHs predictions as some accesses are not tracked, Figure 7 shows throughput degradation in a 2 cores scenario as the d_s increases. This curve is measured on the left y-axis. We also show the storage overhead in percentage of the total L2 cache size, measured on the right y-axis. Thanks to the sampling technique, storage overhead drastically decreases. Thus, with a sampling distance of 16 we obtain average throughput degradations of 0.76% and a storage overhead of 0.77% of the L2 cache size. We think that this is an interesting point of design.

6 Conclusions

In this paper we propose a new DCP algorithm that gives a cost to each L2 access according to its impact in final performance: isolated misses receive higher costs than clustered misses. Next, our algorithm decides the L2 cache partition that minimizes the total cost for all running threads. Furthermore, we have classified workloads for multiple cores into three groups and shown that the dominant situation is precisely the one that offers room for improvement.

We shown that our proposal reaches high throughput for two- and four-core architectures. In all evaluated configurations, MLP-DCP and MLPIPC-DCP systematically outperform both LRU and MinMisses, reaching a speed up of 63.9% (10.6% on average) and 15.4% (4.1% on average) over LRU and MinMisses, respectively. Finally, we have used a sampling technique to propose a practical implementation with a hardware cost in terms of storage under 1% of the total L2 cache size with nearly no performance degradation.

Acknowledgments. This work has been supported by the Ministry of Education and Science of Spain under contracts TIN2004-07739, TIN2007-60625 and grant AP-2005-3318, and by SARC European Project. The authors would like to thank C. Acosta, A. Falcon, D. Ortega, J. Vermoulen and O. J. Santana for their work in the simulation tool and the reviewers for their helpful comments.

References